86 research outputs found

    Atomic-Scale Dynamics of the Formation and Dissolution of Carbon Clusters in SiO2

    Full text link
    Oxidation of SiC produces SiO2 while CO is released. A `reoxidation' step at lower temperatures is, however, necessary to produce high-quality SiO2. This step is believed to cleanse the oxide of residual C without further oxidation of the SiC substrate. We report first-principles calculations that describe the nucleation and growth of O-deficient C clusters in SiO2 under oxidation conditions, fed by the production of CO at the advancing interface, and their gradual dissolution by the supply of O under reoxidation conditions. We predict that both CO and CO2 are released during both steps.Comment: RevTex, 4 pages, 2 ps figures, to appear in Phys. Rev. Lett. (June 25, 2001

    Spin-dependent resonant tunneling through quantum-well states in magnetic metallic thin films

    Full text link
    Quantum-well (QW) states in {\it nonmagnetic} metal layers contained in magnetic multilayers are known to be important in spin-dependent transport, but the role of QW states in {\it magnetic} layers remains elusive. Here we identify the conditions and mechanisms for resonant tunneling through QW states in magnetic layers and determine candidate structures. We report first-principles calculations of spin-dependent transport in epitaxial Fe/MgO/FeO/Fe/Cr and Co/MgO/Fe/Cr tunnel junctions. We demonstrate the formation of sharp QW states in the Fe layer and show discrete conductance jumps as the QW states enter the transport window with increasing bias. At resonance, the current increases by one to two orders of magnitude. The tunneling magnetoresistance ratio is several times larger than in simple spin tunnel junctions and is positive (negative) for majority- (minority-) spin resonances, with a large asymmetry between positive and negative biases. The results can serve as the basis for novel spintronic devices.Comment: 4 figures in 5 eps file

    A first-principles approach to closing the "10-100 eV gap" for charge-carrier thermalization in semiconductors

    Full text link
    The present work is concerned with studying accurately the energy-loss processes that control the thermalization of hot electrons and holes that are generated by high-energy radiation in wurtzite GaN, using an ab initio approach. Current physical models of the nuclear/particle physics community cover thermalization in the high-energy range (kinetic energies exceeding ~100 eV), and the electronic-device community has studied extensively carrier transport in the low-energy range (below ~10 eV). However, the processes that control the energy losses and thermalization of electrons and holes in the intermediate energy range of about 10-100 eV (the "10-100 eV gap") are poorly known. The aim of this research is to close this gap, by utilizing density functional theory (DFT) to obtain the band structure and dielectric function of GaN for energies up to about 100 eV. We also calculate charge-carrier scattering rates for the major charge-carrier interactions (phonon scattering, impact ionization, and plasmon emission), using the DFT results and first-order perturbation theory. With this information, we study the thermalization of electrons starting at 100 eV using the Monte Carlo method to solve the semiclassical Boltzmann transport equation. Full thermalization of electrons and holes is complete within ~1 and 0.5 ps, respectively. Hot electrons dissipate about 90% of their initial kinetic energy to the electron-hole gas (90 eV) during the first ~0.1 fs, due to rapid plasmon emission and impact ionization at high energies. The remaining energy is lost more slowly as phonon emission dominates at lower energies (below ~10 eV). During the thermalization, hot electrons generate pairs with an average energy of ~8.9 eV/pair (11-12 pairs per hot electron). Additionally, during the thermalization, the maximum electron displacement from its original position is found to be on the order of 100 nm.Comment: 23 pages, 20 figures. This LaTex file uses RevTex4.2 from AP

    Sirt1 inhibition promotes in vivo arterial thrombosis and tissue factor expression in stimulated cells

    Get PDF
    Aims The mammalian silent information regulator-two 1 (Sirt1) blunts the noxious effects of cardiovascular risk factors such as type 2 diabetes mellitus and obesity. Nevertheless, the role of Sirt1 in regulating the expression of tissue factor (TF), the key trigger of coagulation, and arterial thrombus formation remains unknown. Methods and results Human as well as mouse cell lines were used for in vitro experiments, and C57Bl/6 mice for in vivo procedures. Sirt1 inhibition by splitomicin or sirtinol enhanced cytokine-induced endothelial TF protein expression as well as surface activity, while TF pathway inhibitor protein expression did not change. Sirt1 inhibition further enhanced TF mRNA expression, TF promoter activity, and nuclear translocation as well as DNA binding of the p65 subunit of nuclear factor-kappa B (NFκB/p65). Sirt1 siRNA enhanced TF protein and mRNA expression, and this effect was reduced in NFκB/p65−/− mouse embryonic fibroblasts reconstituted with non-acetylatable Lys310-mutant NFκB/p65. Activation of the mitogen-activated protein kinases p38, c-Jun NH2-terminal kinase, and p44/42 (ERK) remained unaffected. In vivo, mice treated with the Sirt1 inhibitor splitomicin exhibited enhanced TF activity in the arterial vessel wall and accelerated carotid artery thrombus formation in a photochemical injury model. Conclusion We provide pharmacological and genetic evidence that Sirt1 inhibition enhances TF expression and activity by increasing NFκB/p65 activation in human endothelial cells. Furthermore, Sirt1 inhibition induces arterial thrombus formation in vivo. Hence, modulation of Sirt1 may offer novel therapeutic options for targeting thrombosi

    Endothelial overexpression of LOX-1 increases plaque formation and promotes atherosclerosis in vivo

    Get PDF
    Aims Lectin-like oxLDL receptor-1 (LOX-1) mediates the uptake of oxidized low-density lipoprotein (oxLDL) in endothelial cells and macrophages. However, the different atherogenic potential of LOX-1-mediated endothelial and macrophage oxLDL uptake remains unclear. The present study was designed to investigate the in vivo role of endothelial LOX-1 in atherogenesis. Methods and results Endothelial-specific LOX-1 transgenic mice were generated using the Tie2 promoter (LOX-1TG). Oxidized low-density lipoprotein uptake was enhanced in cultured endothelial cells, but not in macrophages of LOX-1TG mice. Six-week-old male LOX-1TG and wild-type (WT) mice were fed a high-cholesterol diet (HCD) for 30 weeks. Increased reactive oxygen species production, impaired endothelial nitric oxide synthase activity and endothelial dysfunction were observed in LOX-1TG mice as compared with WT littermates. LOX-1 overexpression led to p38 phosphorylation, increased nuclear factor κB activity and subsequent up-regulation of vascular cell adhesion molecule-1, thereby favouring macrophage accumulation and aortic fatty streaks. Consistently, HCD-fed double-mutant LOX-1TG/ApoE−/− displayed oxidative stress and vascular inflammation with higher aortic plaques than ApoE−/− controls. Finally, bone marrow transplantation experiments showed that endothelial LOX-1 was sufficient for atherosclerosis development in vivo. Conclusions Endothelial-specific LOX-1 overexpression enhanced aortic oxLDL levels, thereby favouring endothelial dysfunction, vascular inflammation and plaque formation. Thus, LOX-1 may serve as a novel therapeutic target for atherosclerosi

    Insights into the chemical composition of Equisetum hyemale by high resolution Raman imaging

    Get PDF
    Equisetaceae has been of research interest for decades, as it is one of the oldest living plant families, and also due to its high accumulation of silica up to 25% dry wt. Aspects of silica deposition, its association with other biomolecules, as well as the chemical composition of the outer strengthening tissue still remain unclear. These questions were addressed by using high resolution (<1 μm) Confocal Raman microscopy. Two-dimensional spectral maps were acquired on cross sections of Equisetum hyemale and Raman images calculated by integrating over the intensity of characteristic spectral regions. This enabled direct visualization of differences in chemical composition and extraction of average spectra from defined regions for detailed analyses, including principal component analysis (PCA) and basis analysis (partial least square fit based on model spectra). Accumulation of silica was imaged in the knobs and in a thin layer below the cuticula. In the spectrum extracted from the knob region as main contributions, a broad band below 500 cm−1 attributed to amorphous silica, and a band at 976 cm−1 assigned to silanol groups, were found. From this, we concluded that these protrusions were almost pure amorphous, hydrated silica. No silanol group vibration was detected in the silicified epidermal layer below and association with pectin and hemicelluloses indicated. Pectin and hemicelluloses (glucomannan) were found in high levels in the epidermal layer and in a clearly distinguished outer part of the hypodermal sterome fibers. The inner part of the two-layered cells revealed as almost pure cellulose, oriented parallel along the fiber
    • …
    corecore