36 research outputs found

    Structural brain anomalies in patients with FOXG1 syndrome and in Foxg1+/- mice

    Get PDF
    Objective FOXG1 syndrome is a rare neurodevelopmental disorder associated with heterozygous FOXG1 variants or chromosomal microaberrations in 14q12. The study aimed at assessing the scope of structural cerebral anomalies revealed by neuroimaging to delineate the genotype and neuroimaging phenotype associations. Methods We compiled 34 patients with a heterozygous (likely) pathogenic FOXG1 variant. Qualitative assessment of cerebral anomalies was performed by standardized re-analysis of all 34 MRI data sets. Statistical analysis of genetic, clinical and neuroimaging data were performed. We quantified clinical and neuroimaging phenotypes using severity scores. Telencephalic phenotypes of adult Foxg1+/- mice were examined using immunohistological stainings followed by quantitative evaluation of structural anomalies. Results Characteristic neuroimaging features included corpus callosum anomalies (82%), thickening of the fornix (74%), simplified gyral pattern (56%), enlargement of inner CSF spaces (44%), hypoplasia of basal ganglia (38%), and hypoplasia of frontal lobes (29%). We observed a marked, filiform thinning of the rostrum as recurrent highly typical pattern of corpus callosum anomaly in combination with distinct thickening of the fornix as a characteristic feature. Thickening of the fornices was not reported previously in FOXG1 syndrome. Simplified gyral pattern occurred significantly more frequently in patients with early truncating variants. Higher clinical severity scores were significantly associated with higher neuroimaging severity scores. Modeling of Foxg1 heterozygosity in mouse brain recapitulated the associated abnormal cerebral morphology phenotypes, including the striking enlargement of the fornix. Interpretation Combination of specific corpus callosum anomalies with simplified gyral pattern and hyperplasia of the fornices is highly characteristic for FOXG1 syndrome.Peer reviewe

    Context-specific chromatin remodeling activity of mSWI/SNF complexes depends on the epigenetic landscape

    No full text
    Atrophic brain changes in acute anorexia nervosa (AN) are often visible to the naked eye on computed tomography or magnetic resonance imaging scans, but it remains unclear what is driving these effects. In neurological diseases, neurofilament light (NF-L) and tau protein have been linked to axonal damage. Glial fibrillary acidic protein (GFAP) has been associated with astroglial injury. In an attempt to shed new light on factors potentially underlying past findings of structural brain alterations in AN, the current study investigated serum NF-L, tau protein, and GFAP levels longitudinally in AN patients undergoing weight restoration. Blood samples were obtained from 54 acutely underweight, predominantly adolescent female AN patients and 54 age-matched healthy control participants. AN patients were studied in the severely underweight state and again after short-term partial weight restoration. Group comparisons revealed higher levels of NF-L, tau protein, and GFAP in acutely underweight patients with AN compared to healthy control participants. Longitudinally, a decrease in NF-L and GFAP but not in tau protein levels was observed in AN patients upon short-term partial weight restoration. These results may be indicative of ongoing neuronal and astroglial injury during the underweight phase of AN. Normalization of NF-L and GFAP but not tau protein levels may indicate an only partial restoration of neuronal and astroglial integrity upon weight gain after initial AN-associated cell damage processes

    Chromatin Remodeling BAF (SWI/SNF) Complexes in Neural Development and Disorders

    No full text
    The ATP-dependent BRG1/BRM associated factor (BAF) chromatin remodeling complexes are crucial in regulating gene expression by controlling chromatin dynamics. Over the last decade, it has become increasingly clear that during neural development in mammals, distinct ontogenetic stage-specific BAF complexes derived from combinatorial assembly of their subunits are formed in neural progenitors and post-mitotic neural cells. Proper functioning of the BAF complexes plays critical roles in neural development, including the establishment and maintenance of neural fates and functionality. Indeed, recent human exome sequencing and genome-wide association studies have revealed that mutations in BAF complex subunits are linked to neurodevelopmental disorders such as Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, Kleefstra's syndrome spectrum, Hirschsprung's disease, autism spectrum disorder, and schizophrenia. In this review, we focus on the latest insights into the functions of BAF complexes during neural development and the plausible mechanistic basis of how mutations in known BAF subunits are associated with certain neurodevelopmental disorders

    Mapping of domain-mediated protein-protein interaction by SPOT peptide assay

    No full text
    Summary: Identification of peptides mediating protein-protein interaction (PPI) is crucial for understanding the function of interlinked proteins in cellular processes and amino acid-associated diseases. Traditional PPI assays are laborious, involving the generation of many truncated proteins. SPOT peptide assay allows high-throughput detection of domains essential for PPI by synthesizing several hundred peptides on a cellulose membrane. Here, we present a rapid SPOT peptide protocol for identifying the binding motifs, which mediate interaction between the chromatin remodeling factors BAF155/BAF170 and the epigenetic factor Kdm6b.For complete details on the use and execution of this protocol, please refer to Narayanan et al. (2015)

    Emerging role of m6Am^{6}A methylome in brain development

    No full text
    Dynamic modification of RNA affords proximal regulation of gene expression triggered by non-genomic or environmental changes. One such epitranscriptomic alteration in RNA metabolism is the installation of a methyl group on adenosine [N6N^{6}-methyladenosine (m6Am^{6}A)] known to be the most prevalent modified state of messenger RNA (mRNA) in the mammalian cell. The methylation machinery responsible for the dynamic deposition and recognition of m6Am^{6}A on mRNA is composed of subunits that play specific roles, including reading, writing, and erasing of m6Am^{6}A marks on mRNA to influence gene expression. As a result, peculiar cellular perturbations have been linked to dysregulation of components of the mRNA methylation machinery or its cofactors. It is increasingly clear that neural tissues/cells, especially in the brain, make the most of m6Am^{6}A modification in maintaining normal morphology and function. Neurons in particular display dynamic distribution of m6Am^{6}A marks during development and in adulthood. Interestingly, such dynamic m6Am^{6}A patterns are responsive to external cues and experience. Specific disturbances in the neural m6Am^{6}A landscape lead to anomalous phenotypes, including aberrant stem/progenitor cell proliferation and differentiation, defective cell fate choices, and abnormal synaptogenesis. Such m6Am^{6}A-linked neural perturbations may singularly or together have implications for syndromic or non-syndromic neurological diseases, given that most RNAs in the brain are enriched with m6Am^{6}A tags. Here, we review the current perspectives on the m6Am^{6}A machinery and function, its role in brain development and possible association with brain disorders, and the prospects of applying the clustered regularly interspaced short palindromic repeats (CRISPR)–dCas13b system to obviate m6Am^{6}A-related neurological anomalies
    corecore