31 research outputs found

    Estrous behavior of domestic cat

    No full text

    Solar Probe thermal shield design and testing

    No full text

    Combination technique based second moment analysis for elliptic PDEs on random domains

    Get PDF
    In this article, we propose the sparse grid combination technique for the second moment analysis of elliptic partial differential equations on random domains. By employing shape sensitivity analysis, we linearize the influence of the random domain perturbation on the solution. We derive deterministic partial differential equations to approximate the random solution’s mean and its covariance with leading order in the amplitude of the random domain perturbation. The partial differential equation for the covariance is a tensor product Dirichlet problem which can efficiently be determined by Galerkin’s method in the sparse tensor product space. We show that this Galerkin approximation coincides with the solution derived from the combination technique if the detail spaces in the related multiscale hierarchy are constructed with respect to Galerkin projections. This means that the combination technique does not impose an additional error in our construction. Numerical experiments quantify and qualify the proposed method
    corecore