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Abstract In this article, we propose the sparse grid combination technique for
the second moment analysis of elliptic partial differential equations on random
domains. By employing shape sensitivity analysis, we linearize the influence of
the random domain perturbation on the solution. We derive deterministic partial
differential equations to approximate the random solution’s mean and its covariance
with leading order in the amplitude of the random domain perturbation. The partial
differential equation for the covariance is a tensor product Dirichlet problem which
can efficiently be determined by Galerkin’s method in the sparse tensor product space.
We show that this Galerkin approximation coincides with the solution derived from
the combination technique provided that the detail spaces in the related multiscale
hierarchy are constructed with respect to Galerkin projections. This means that
the combination technique does not impose an additional error in our construction.
Numerical experiments quantify and qualify the proposed method.

1 Introduction

Various problems in science and engineering can be formulated as boundary value
problems for an unknown function. In general, the numerical simulation is well
understood provided that the input parameters are known exactly. In many applica-
tions, however, the input parameters are not known exactly. Especially, the treatment
of uncertainties in the computational domain has become of growing interest, see
e.g. [5, 23, 38, 41]. In this article, we consider the elliptic diffusion equation

−div
(
α∇u(ω)

)
= f in D(ω), u(ω) = 0 on ∂D(ω), (1)
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as a model problem where the underlying domain D(ω) ⊂ Rd or respectively its
boundary ∂D(ω) are random. For example, one might think of tolerances in the
shape of products fabricated by line production, or shapes which stem from inverse
problems, like for example tomography. Of course, besides a scalar diffusion coef-
ficient α(x), one can also consider a diffusion matrix A(x), cf. [18]. Even so, the
emphasis of our considerations will be laid on the case α(x)≡ 1, that is the Poisson
equation.

Besides the fictitious domain approach considered in [5], one might essentially
distinguish two approaches: the domain mapping method, cf. [6, 21, 27, 38, 41],
and the perturbation method. They result from a description of the random domain
either in Lagrangian coordinates or in Eulerian coordinates, see e.g. [37]. The latter
approach will be dealt with in this article.

The perturbation method starts with a prescribed perturbation field

V(ω) : Dref→ Rd

for a fixed reference domain Dref and uses a shape Taylor expansion with respect to
this perturbation field to represent the solution to the model problem, see e.g. [19, 23].
In fact, as we will see later on, it is sufficient to know the perturbation field in a
vicinity of ∂Dref, i.e.

V(ω) : ∂Dref→ Rd .

This is a remarkable feature since it might in practice be much easier to obtain
measurements from the outside of a work-piece to estimate the perturbation field
V(ω) rather than from its interior.

The starting point for our considerations will be the knowledge of an appropriate
description of the the random field V(ω). To that end, we assume that the random
vector field is described in terms of its mean

E[V] : Dref→ Rd , E[V](x) =
[
E[V1](x), . . . ,E[Vd ](x)

]ᵀ
and its (matrix valued) covariance function

Cov[V] : Dref×Dref→ Rd×d , Cov[V](x,y) =

Cov1,1(x,y) · · · Cov1,d(x,y)
...

...
Covd,1(x,y) · · · Covd,d(x,y)

.
For the considered perturbation method, this representation of the random vector
field is already sufficient. Having the mean and the covariance of the random vector
field at hand, we aim at approximating the corresponding statistics of the unknown
random solution.

Making use of sensitivity analysis, we linearize the solution’s nonlinear depen-
dence on the random vector field V(ω). Based on this, we derive deterministic
equations, which compute, to leading order, the mean field and the covariance. In
particular, the covariance solves a tensor product boundary value problem on the
product domain Dref×Dref. This linearization technique has already been applied
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to random diffusion coefficients or even to elliptic equations on random domains in
[18, 22, 23]. In difference to these previous works, we do not explicitly use wavelets
[23, 34, 35] or multilevel frames [18, 22] for the discretization in a sparse tensor
product space. Instead, we define the complement spaces which enter the sparse
tensor product construction by Galerkin projections. The Galerkin discretization
leads then to a system of linear equations which decouples into subproblems with
respect to full tensor product spaces of small size. These subproblems can be solved
by standard multilevel finite element methods. In our particular realization, we need
only the access to the stiffness matrix, the BPX preconditioner, cf. [3], and the sparse
grid interpolant, cf. [4], of the covariance function of the random vector field under
consideration. In this sense, our approach can be considered to be weakly intrusive.
The resulting representation of the covariance is known as the combination tech-
nique [14]. Nevertheless, in difference to [14, 28, 32, 42], this representation is a
consequence of the Galerkin method in the sparse tensor product space and is not an
additional approximation step.

The rest of this article is structured as follows. In Section 2, we introduce the
underlying framework. Here, we define random vector fields and the related Lebesgue-
Bochner spaces. Moreover, we briefly refer to the Karhunen-Loève expansion of
random vector fields. Section 3 is devoted to shape sensitivity analysis. Especially, the
shape Taylor expansion is introduced here. In Section 4, we apply the shape Taylor
expansion to our model problem and derive deterministic equations for the mean and
the covariance. Section 5 deals with the approximation of tensor product Dirichlet
problems. In Section 6, we present in detail the sparse grid combination technique
for the solution of tensor product Dirichlet problems. The efficient implementation
of the proposed method is non-trivial. Therefore, we think it is justified to dedicate
Section 7 to this topic. Finally, in Section 8 we present our numerical results.

Throughout this article, in order to avoid the repeated use of generic but un-
specified constants, by C . D we mean that C can be bounded by a multiple of D,
independently of parameters which C and D may depend on. Obviously, C & D is
defined as D .C, and C h D as C . D and C & D.

2 Preliminaries

The natural environment for the consideration of random vector fields are the so
called Lebesgue-Bochner spaces. These spaces quantify the integrability of Banach
space valued functions and have originally been introduced in [1]. In this section, we
shall provide some facts and results on Lebesgue-Bochner spaces. For more details
on this topic, we refer to [24].

Let (Ω ,F ,P) denote a complete and separable probability space with σ -algebra
F and probability measure P. Here, complete means that F contains all P-null sets.
The separability is e.g. obtained if F is countably generated, cf. [16, Theorem 40.B].
Furthermore, let Dref ⊂ Rd denote a sufficiently smooth domain.
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Definition 1. For p > 0, the Lebesgue-Bochner space Lp
P
(
Ω ;L2(Dref;Rd)

)
consists

of all equivalence classes of strongly P-measurable maps u : Ω → L2(Dref;Rd) with
finite norm

‖u‖Lp
P(Ω ;L2(Dref;Rd)) :=


(∫

Ω

‖u(ω, ·)‖p
L2(Dref;Rd)

dP
)1/p

, p < ∞

esssup
ω∈Ω

‖u(ω, ·)‖L2(Dref;Rd), p = ∞.

(2)

Two functions u,v : Ω → L2(Dref;Rd) are identified if they coincide P-almost every-
where, i.e. if P({u 6= v}) = 0. Moreover, the space L2(Dref;Rd) is equipped with the
inner product

(u,v)L2(Dref;Rd) :=
∫

Dref

〈u,v〉dx for all u,v ∈ L2(Dref;Rd),

where 〈·, ·〉 denotes the canonical inner product in Rd .

In the definition, the term strongly P-measurable refers to functions which are
measurable in the classical sense and additionally essentially separable valued. The
second condition is automatically met for functions u : Ω → L2(Dref;Rd) which are
measurable in the classical sense.

The spaces Lp
P
(
Ω ;L2(Dref;Rd)

)
are for all p ∈ [1,∞] complete with respect to

the norm defined in (2) and thus Banach spaces, see e.g. [24] for a proof of this
statement. For p = 1, the space L1

P
(
Ω ;L2(Dref;Rd)

)
coincides with the space of

Bochner integrable functions, cf. [9, Theorem 2.4]. It is moreover well known that
L2
P(Ω) is separable if (Ω ,F ,P) is separable, cf. [16, Exercise 43.(1)]. Hence, for

p = 2, the Bochner space L2
P
(
Ω ;L2(Dref;Rd)

)
is a separable Hilbert space equipped

with the inner product

(u,v)L2
P(Ω ;L2(Dref;Rd)) :=

∫
Ω

(
u(ω, ·),v(ω, ·)

)
L2(Dref;Rd)

dP.

In particular, it holds L2
P
(
Ω ;L2(Dref;Rd)

)∼= L2
P(Ω)⊗L2(Dref;Rd).

We summarize some important facts about the Bochner integral from [24].

Theorem 1.

(a) The Bochner integral ∫
Ω

·dP : Ω → L2(Dref;Rd)

is a linear map.
(b) For u ∈ L1

P
(
Ω ;L2(Dref;Rd)

)
it holds∥∥∥∥∫A

u(ω, ·)dP
∥∥∥∥

L2(Dref;Rd)

6
∫

A
‖u(ω, ·)‖L2(Dref;Rd) dP

for all A ∈F .
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(c) Let {un}n be a sequence of Bochner integrable functions with limn→∞ un = u
in P-measure and g a Lebesgue integrable function on Ω such that ‖un‖ 6 g
P-almost everywhere. Then, u is Bochner integrable and

lim
n→∞

∫
A

un dP=
∫

A
udP

for all A ∈F . Moreover, it holds

lim
n→∞

∫
Ω

‖un−u‖L2(Dref;Rd) dP= 0.

(d) Let T : U → B be a closed linear operator for some Banach space B and
U ⊆ L2(Dref;Rd). If u and Tu are Bochner integrable, then

T
(∫

A
udP

)
=
∫

A
TudP

for all A ∈F .

Let the random vector field V ∈ L2
P
(
Ω ;L2(D;Rd)

)
be represented according to

V(ω,x) = [V1(ω,x), . . . ,Vd(ω,x)]ᵀ.

Then, we can define the mean of V in terms of the Bochner integral

E[V](x) :=
∫

Ω

V(ω,x)dP(Ω) ∈ L2(D;Rd).

Especially, it holds E[Vi](x) =
∫

Ω
Vi(ω,x)dP(Ω). With respect to the centered ran-

dom field
V0 = V−E[V],

we introduce the (matrix valued) covariance function of V according to

Cov[V](x,y) = [Covi, j(x,y)]di, j=1

with
Covi, j(x,y) = E

[
V0,i(ω,x)V0, j(ω,y)]. (3)

The boundedness of Covi, j(x,y) in L2(Dref×Dref) follows from the Cauchy-Schwarz
inequality and the application of Fubini’s theorem. Since Covi, j(x,y) ∈ L2(Dref×
Dref) holds, we conclude Cov[V](x,y) ∈ L2(D×D;Rd×d).

In order to make the random vector field V(ω,x) ∈ L2
P
(
Ω ;L2(D;Rd)

)
fea-

sible for numerical computations, e.g. for a (quasi-) Monte Carlo method, we
shall introduce its Karhunen-Loève expansion, cf. [26]. Since we may identify
L2
P
(
Ω ;L2(D;Rd)

) ∼= L2
P(Ω)⊗L2(D;Rd), one can show that V0(ω,x) exhibits the

orthogonal decomposition
V0 = ∑

i∈I
σiXi⊗ϕ i,
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where {ϕ i}i∈I ⊂ L2(D;Rd) and {Xi}i∈I ⊂ L2
P(Ω) are orthonormal families. With

respect to the canonical map

L2
P(Ω)⊗L2(D;Rd)→ L2

P
(
Ω ;L2(D;Rd)

)
, X⊗ϕ 7→ X(ω)ϕ(x),

we end up with the following

Definition 2. Let V(ω,x) be a vector field in L2
P
(
Ω ;L2(D;Rd)

)
. The expansion

V(ω,x) = E[V](x)+ ∑
i∈I

σiXi(ω)ϕ i(x)

with (Xi,X j)L2
P(Ω) = δi, j and E[Xi] = 0 is called Karhunen-Loève expansion of

V(ω,x).

Remark 1. The knowledge of the random vector field V(ω,x) is sufficient to compute
the related Karhunen-Loève expansion. In practice, however, the random field is
often only given in terms of its (empirical) mean E[V] and its (empirical) covariance
function Cov[V]. In this case, the orthogonal basis in L2

P(Ω) is only determined up
to isometry. Therefore, for the use of e.g. a (quasi-) Monte Carlo method, the law of
the random variables {Xi}i∈I has to be approximated appropriately, for example by
a maximum likelihood estimate, cf. [33]. This will be in contrast to the discretization
in the perturbation method where we do not need to know the random variables’
distribution at all.

Without loss of generality, we may assume that E[V](x) = x is the identity map-
ping. Otherwise, we replace Dref and ϕk by

D̃ref := E[V](Dref) and ϕ̃k :=
√

det(E[V]−1)′ϕk ◦E[V]−1.

3 Shape sensitivity analysis

In this section, we summarize results on shape sensitivity analysis for the Poisson
equation

−∆u = f in Dref, u = 0 on Γref := ∂Dref. (4)

For a more general framework and the details on this topic, we refer the reader to
[8, 12, 37] and the references therein.

Assume that Dref is of class C2. This smoothness assumption guarantees the H2-
regularity of problem (4), cf. [37, Proposition 2.83]. Moreover, let V∈C2(Rd ;Rd)
be a vector field. We may define the family of transformations {Tε}ε>0 by the
perturbations of identity

Tε(x) = Id(x)+ εV(x).

Then, there exists an ε0 > 0 such that the transformations Tε are C2-diffeomorphisms
for all ε ∈ [0,ε0], cf. [36, Section 1.1]. The related family of domains will be denoted
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by Dε := Tε(Dref). We shall consider the Poisson equation on these domains, i.e.

−∆uε = f in Dε , uε = 0 on Γε := ∂Dε . (5)

Here, in order to guarantee the well-posedness of the equation, we assume that the
right hand side is defined on the hold-all

D =
⋃

06ε6ε0

Dε .

Now, we have for the weak solution uε ∈ Hs(Dε) with s ∈ [0,2] that

uε = uε ◦Tε ∈ Hs(Dref)

for all ε ∈ [0,ε0], see e.g. [37]. Especially, we set u := u0 ∈ Hs(Dref). Then, we may
define the material derivative of u as in [37, Definition 2.71].

Definition 3. The function u̇[V] ∈ Hs(Dref) is called the strong (weak) material
derivative of u ∈ Hs(Dref) in the direction V if the strong (weak) limit

u̇[V] = lim
ε→0

1
ε
(uε −u)

exists.

The shape sensitivity analysis considered in this section is based on the notion of
the local shape derivative. To this end, we consider for u∈Hs(Dref) and uε ∈Hs(Dε)
the expression

1
ε

(
uε(x)−u(x)

)
.

Obviously, this expression is only meaningful if x ∈ Dε ∩Dref. Nevertheless, accord-
ing to [12, Remark 2.2.12], there exists an ε(x,V) due to the regularity of Tε such
that x ∈ Dε ∩Dref for all 0 6 ε 6 ε(x,V). Moreover, in order to define a meaningful
functional analytic framework for the limit ε → 0, one has to consider compact
subsets K b Dref, cf. [36]. Hence, we have from [12, Definition 2.2.13] the following

Definition 4. For K b Dref, the function δu[V] ∈ Hs(K) is called the strong (weak)
local Hs(K) shape derivative of u in direction V, if the strong (weak) Hs(K) limit

δu[V] = lim
ε→0

1
ε
(uε −u)

exists. It holds δu ∈ Hs
loc(Dref) strongly (weakly) if the limit exists for arbitrary

K b Dref.

Notice that the definition of δu[V] has no meaning on Γref in general, cf. [12,
Remark 2.2.14]. Nevertheless, since boundary values for u̇[V] are obtained via the
trace operator, cf. [37, Proposition 2.75], we may define the boundary values for
δu[V] by employing the relation
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u̇[V] = δu[V]+ 〈∇u,V〉,

cf. [37, Definition 2.85]. Therefore, if f ∈ H1(D), the local shape derivative for the
Poisson equation (5) satisfies the boundary value problem

∆δu = 0 in Dref, δu =−〈V,n〉∂u
∂n

on Γref, (6)

cf. [37, Proposition 3.1]. Here, n(x) denotes the outward normal at the boundary Γref.
The representation (6) of δu[V] indicates that it is already sufficient to consider

vector fields V which are compactly supported in a neighbourhood of Γref, i.e. V
∣∣
K ≡ 0

for all K b Dref, cf. [12, Remark 2.1.6]. More precisely, it holds for two perturbation
fields V and Ṽ that

δu[V] = δu[Ṽ] if V
∣∣
Γref

= Ṽ
∣∣
Γref

,

cf. [37, Proposition 2.90]. For example, it is quite common to consider (normal)
perturbations of the boundary, see e.g. [12, 25, 29, 30].

Having the local shape derivative of the solution u to (4) at hand, we can linearize
the perturbed solution uε to (5) in a neighbourhood of Dref in terms of a shape Taylor
expansion, cf. [10, 11, 23, 31], according to

uε(x) = u(x)+ εδu(x)+ ε
2C(x) for x ∈ K b (Dref∩Dε), (7)

where the function |C(x)|< ∞ depends on the distance dist(K,Γref) and the load f .

4 Approximation of mean and covariance

We shall go back to our model problem, the Poisson equation on a random domain:

−∆u(ω,x) = f (x) in D(ω), u(ω,x) = 0 on Γ (ω). (8)

We assume that the random domain is described by a random vector field. This
means, we have

D(ω) := V(ω,Dref).

In respect of the discussion in the end of Section 2, it is reasonable to assume that V
is a perturbation of identity. More precisely, we assume that it holds

V(ω,x) = Id(x)+V0(ω,x)

for a vector field V0(ω) ∈ C2(Dref;Rd) for almost every ω ∈ Ω with E[V0] = 0.
We shall further assume the uniformity condition ‖V0(ω)‖C2(Dref;Rd) 6 c for some
c < ∞ and for almost every ω ∈Ω . Then, in view of (7), the first-order shape Taylor
expansion for the solution u(ω) to (8) with respect to the transformation

Tε(x) = Id(x)+ εV0(ω,x), (9)
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is given by
u(ω,x) = u(x)+ εδu(x)[V0(ω)]+O(ε2).

In this expansion, u is the solution to

−∆u = f in Dref, u = 0 on Γref (10)

while δu[V0(ω)] is the solution to

∆δu[V0(ω)] = 0 in Dref, δu[V0(ω)] =−〈V0(ω),n〉∂u
∂n

on Γref. (11)

As already pointed out in the end of the preceding section, it is sufficient to know
V0(ω,x) only in a neighbourhood of the boundary Γref of Dref. This is in contrast to
the domain mapping method where one always has to know the perturbation field for
the whole domain Dref.

In order to simplify the notation, we will write δu(ω) instead of δu[V0(ω)] in
the sequel. Having the first-order shape Taylor expansion (9) of u(ω) at hand, we
can approximate the related moments from it.

Theorem 2. For ε > 0 sufficiently small, it holds for K b (Dref∩Dε) that

E[u] = u+O(ε2) in K (12)

with u ∈ H1
0 (Dref). The covariance of u satisfies

Cov[u] = ε
2 Cov[δu]+O(ε3) in K×K (13)

with the covariance Cov[δu] ∈ H1(Dref)⊗H1(Dref). The covariance is given as the
solution to the following boundary value problem

(∆ ⊗∆)Cov[δu] = 0 in Dref×Dref,

(∆ ⊗ γ
int
0 )Cov[δu] = 0 in Dref×Γref,

(γ int
0 ⊗∆)Cov[δu] = 0 in Γref×Dref,

(γ int
0 ⊗ γ

int
0 )Cov[δu] = 〈n(x),Cov[V]n(y)〉

(
∂u
∂n
⊗ ∂u

∂n

)
on Γref×Γref.

(14)

Here, γ int
0 : H1(Dref)→ H1/2(Γref) denotes the interior trace operator.

Proof. The equation for the mean is easily obtained by exploiting the linearity of the
mean. It remains to show that

E[δu] = 0.

By Theorem 1, we know that we may interchange the Bochner integral with the
Laplace operator. Thus, from (11), we obtain the following boundary value problem
for E[δu]:
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∆E[δu] = 0 in Dref, E[δu] =−E
[
〈V0,n〉

∂u
∂n

]
on Γref.

By the linearity of the Bochner integral, the boundary condition can be written as

−E
[
〈V0,n〉

∂u
∂n

]
=−〈E[V0],n〉

∂u
∂n

= 0

since E[V0] = 0. Thus, E[δu] solves the Laplace equation with homogeneous bound-
ary condition. From this, we infer E[δu] = 0.

For the covariance Cov[u], we obtain

Cov[u] = E
[
(u−E[u])⊗ (u−E[u])

]
= E

[(
u+ εδu(ω)+O(ε2)−E[u]

)
⊗
(
u+ εδu(ω)+O(ε2)−E[u]

)]
.

Since we can estimate E[u]−u = O(ε2) in K due to (12), we arrive at

Cov[u] = E
[(

εδu(ω)+O(ε2)
)
⊗
(
εδu(ω)+O(ε2)

)]
= ε

2E[δu(ω)⊗δu(ω)]+O(ε3).

In view of Cov[δu] = E[δu(ω)⊗δu(ω)], we conclude (13). Finally, by tensoriza-
tion of (11) and application of the mean together with Theorem 1, one infers that
Cov[δu] ∈ H1(Dref)⊗H1(Dref) is given by (14). ut

In the sequel, for t > 0, we set

Ht
mix(Dref×Dref) := Ht(Dref)⊗Ht(Dref),

Ht
mix(Γref×Γref) := Ht(Γref)⊗Ht(Γref).

Remark 2. The technique which we used to derive the approximation error for the
covariance of u can straightforwardly be applied to obtain a similar result for the k-th
moment, i.e.

E
[
(u−E[u])⊗ . . .⊗ (u−E[u])︸ ︷︷ ︸

k-times

]
.

In this case, we end up with the expression

E
[(

εδu+O(ε2)
)
⊗ . . .⊗

(
εδu+O(ε2)

)]
= ε

kE[δu⊗ . . .⊗δu]+O(εk+1),

where the constant depends exponentially on k, see also [7].
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5 Discretization of tensor product Dirichlet problems

In the previous section, we have seen that we end up solving the tensor product
Dirichlet problem (14) in order to approximate the covariance of the model problem’s
solution. The treatment of the non-homogenous tensor product Dirichlet boundary
condition is non-trivial. Therefore, we think that it is justified to consider here the
discretization by finite elements in detail.

We start with the discretization of univariate Dirichlet problems and then gen-
eralize the approach towards the tensor product case. We thus aim at solving the
Dirichlet boundary value problem

∆u = 0 in Dref, u = g on Γref. (15)

By the inverse trace theorem, see e.g. [40], there exists an extension of ug ∈H1(Dref)

with γ int
0 ug = g provided that g ∈ H1/2(Γref). Therefore, it remains to determine the

function u0 = u−ug ∈ H1
0 (Dref) such that there holds

aD(u0,v) =−aD(ug,v) for all v ∈ H1
0 (Dref). (16)

Here and in the sequel, the elliptic bilinear form related to the Laplace operator is
given by

aD(u,v) := (∇u,∇v)L2(Dref)
for u,v ∈ H1

0 (Dref).

The question arises how to numerically determine a suitable extension ug of
the Dirichlet data. We follow here the approach from [2], see also [13], where the
extension is generated by means of an L2-projection of the given boundary data. To
that end, we introduce the nested sequence of finite element spaces

V0 ⊂V1 ⊂ ·· · ⊂VJ ⊂ H1(Dref).

Herein, given a uniform triangulation for Dref, the space Vj corresponds to the space of
continuous piecewise linear functions {ϕ j,k ∈Vj : k ∈I j}. Of course, by performing
obvious modifications, one can employ the presented framework also for higher order
ansatz functions. Notice that we have dimVj h 2d j. In the following, we distinguish
between basis functions {ϕ j,k ∈Vj : k ∈I D

j } which are supported in the interior of
the reference domain, i.e. ϕ j,k

∣∣
Γref
≡ 0, and boundary functions {ϕ j,k ∈Vj : k ∈I Γ

j }
with ϕ j,k

∣∣
Γref
6≡ 0. Notice that I j = I D

j ∪I Γ
j and I D

j ∩I Γ
j = /0. The related finite

element spaces are then given by

V D
j := span{ϕ j,k∈Vj : k ∈I D

j } and VΓ
j := span{ϕ j,k|Γref : ϕ j,k∈Vj,k ∈I Γ

j }.

Moreover, we denote the L2-inner product on Γref by

aΓ (u,v) := (u,v)L2(Γref)
for u,v ∈ L2(Γref).
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Then, the L2-orthogonal projection of the Dirichlet data is given by the solution to
the following variational formulation:

Find g j ∈VΓ
j such that

aΓ (g j,v) = aΓ (g,v) for all v ∈VΓ
j .

(17)

We are now prepared to formulate the Galerkin discretization of (16). To that end,
we introduce the stiffness matrices

SΛ
j :=

[
aD(ϕ j,`,ϕ j,k)

]
k∈I D

j , `∈I Λ
j
, Λ ∈ {D,Γ } (18)

and the mass matrices with respect to the boundary

G j :=
[
aΓ (ϕ j,`,ϕ j,k)

]
k∈I Γ

j , `∈I Γ

j′
. (19)

The related data vector reads

g j =
[
aΓ (g,ϕ j,k)

]
k∈I Γ

j
.

In order to compute an approximate solution to this boundary value problem in the
finite element space VJ ⊂ H1(Dref) for J ∈ N, we make the ansatz

uJ = ∑
k∈IJ

uJ,kϕJ,k = ∑
k∈I D

J

uJ,kϕJ,k + ∑
k∈I Γ

J

uJ,kϕJ,k = uD
J +uΓ

J .

At first, we determine the boundary part uΓ
J ∈ H1(D) such that

GJuΓ
J = gJ . (20)

Therefore, uΓ
J |Γref is the L2-orthogonal projection of the Dirichlet datum g onto

the discrete trace space VΓ
J . Having uΓ

J at hand, we can compute the domain part
uD

J ∈ H1
0 (D) from

SD
J uD

J =−SΓ
J uΓ

J . (21)

We use the conjugate gradient method to iteratively solve the systems of linear equa-
tions (20) and (21). Using a nested iteration, combined with the BPX-preconditioner,
cf. [3], in case of (21), results in a linear over-all complexity, see [15]. Moreover,
from [2, Theorem 1], we obtain the following convergence result.

Theorem 3. Let g ∈ Ht(Γref) for 0 6 t 6 3/2. Then, if gJ ∈VΓ
J is given by (17), the

Galerkin solution uJ to (15) satisfies

‖u−uJ‖L2(Dref)
. 2−J(t+1/2)‖g‖Ht (Γref).

Next, we deal with the tensor product boundary value problem (14) and discretize
it in VJ⊗VJ . We make the ansatz
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Cov[δu]J = ∑
k∈IJ

∑
k′∈IJ

uJ,k,k′(ϕJ,k⊗ϕJ,k′)

= Cov[δu]D,D
J +Cov[δu]D,Γ

J +Cov[δu]Γ ,D
J +Cov[δu]Γ ,Γ

J

(22)

with

Cov[δu]Λ ,Λ ′

J = ∑
k∈I Λ

J

∑
k∈I Λ ′

J

uJ,k,k′(ϕJ,k⊗ϕJ,k′) for Λ ,Λ ′ ∈ {D,Γ }.

In complete analogy to the non-tensor product case, we obtain the solution scheme

(1) Solve (GJ⊗GJ)uΓ ,Γ
J = gJ .

(2) Solve (GJ⊗SD
J )u

Γ ,D
J =−(GJ⊗SΓ

J )u
Γ ,Γ
J and (SD

J ⊗GJ)uD,Γ
J =−(SΓ

J ⊗GJ)uΓ ,Γ
J .

(3) Solve (SD
J ⊗SD

J )u
D,D
J =−(SΓ

J ⊗SΓ
J )u

Γ ,Γ
J − (SΓ ⊗SD

J )u
Γ ,D
J − (SD⊗SΓ

J )u
D,Γ
J .

Herein, we set uΛ ,Λ ′

J = [uJ,k,k′ ]k∈I Λ
J ,k′∈I Λ ′

J
for Λ ,Λ ′ ∈ {D,Γ } and

gJ =

[(
〈n(x),Cov[V]n(y)〉

(
∂u
∂n
⊗ ∂u

∂n

)
,ϕJ,k⊗ϕJ,k′

)
L2(Γref×Γref)

]
k,k′∈I Γ

J

.

The different tensor products of mass matrices and stiffness matrices in this formula-
tion arise from the related tensor products of the bilinear forms aD(·, ·) and aΓ (·, ·).
Namely, these are

aΓ ,Γ (u,v) :=
(
u,v
)

L2(Γref×Γref)
for u,v ∈ L2(Γref)⊗L2(Γref),

aΓ ,D(u,v) :=
(
(Id⊗∇)u,(Id⊗∇)v

)
L2(Γref×Dref)

for u,v ∈ L2(Γref)⊗H1
0 (Dref),

aD,Γ (u,v) :=
(
(∇⊗ Id)u,(∇⊗ Id)v

)
L2(Dref×Γref)

for u,v ∈ H1
0 (Dref)⊗L2(Γref),

aD,D(u,v) :=
(
(∇⊗∇)u,(∇⊗∇)v

)
L2(Dref×Dref)

for u,v ∈ H1
0 (Dref)⊗H1

0 (Dref).

For the approximation error of the Galerkin solution in VJ ⊗VJ , there holds a
result similar to Theorem 3.

Theorem 4. Let g ∈ Ht
mix(Γref×Γref) for 0 6 t 6 3/2. Then, if gJ ∈VΓ

J ⊗VΓ
J is the

L2-orthogonal projection of the Dirichlet data, the Galerkin solution uJ to the tensor
product Dirichlet problem satisfies

‖u−uJ‖L2(Dref×Dref)
. 2−J(t+1/2)‖g‖Ht

mix(Γref×Γref)
.

Proof. By a tensor product argument, the proof of this theorem is obtained by
summing up the uni-directional error estimates provided by Theorem 3. ut

Unfortunately, the computational complexity of this approximation is of order
(dimVJ)

2, which may become prohibitive for increasing level J. A possibility to
overcome this obstruction is given by the discretization in sparse tensor product
spaces. In the following we shall focus on this approach.
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6 Sparse second moment analysis

According to Section 4, to leading order, the mean of the solution of the random
boundary value problem (8) satisfies the deterministic equation (10). This equation
can be discretized straightforwardly by means of finite elements. The resulting system
of linear equations may then be solved in optimal complexity e.g. by a multigrid
solver. The solution of the tensor product structured problem (14) is a little more
involved and requires another approach in order to maintain the overall complexity.

Instead of discretizing the tensor product boundary value problem (14) in the
space VJ⊗VJ , we consider here the discretization in the sparse tensor product space

V̂J⊗VJ := ∑
j+ j′6J

Vj⊗Vj′ = ∑
j+ j′=J

Vj⊗Vj′ ⊂ H1
mix(Dref×Dref). (23)

For the dimension of the sparse tensor product space, we have

dimV̂J⊗VJ h dimVJ log(dimVJ)

instead of (dimVJ)
2, which is the dimension of VJ⊗VJ , cf. [4]. Thus, the dimension

of the sparse tensor product space is substantially smaller than that of the full tensor
product space.

The following lemma, proven in [35, 39], tells us that the approximation power in
the sparse tensor product space is nearly as good as in the full tensor product space,
provided that the given function has some extra regularity in terms of bounded mixed
derivatives.

Lemma 1. For 0≤ t < 3/2, t ≤ q≤ 2 there holds the error estimate

inf
v̂J∈V̂J⊗VJ

‖v− v̂J‖Ht
mix(Dref×Dref)

.

{
2J(t−q)

√
J‖v‖Hq

mix(Dref×Dref)
, if q = 2,

2J(t−q)‖v‖Hq
mix(Dref×Dref)

, otherwise,

provided that v ∈ Hq
mix(Dref×Dref).

This lemma gives rise to an estimate for the Galerkin approximation Ĉor[δu]J of
(14) in the sparse tensor product space V̂J⊗VJ , see e.g. [18, Proposition 5]. We state
it only for the case of piecewise linear finite elements as considered here.

Corollary 1. The Galerkin approximate Ĉor[δu]J ∈ V̂J⊗VJ to (14) satisfies the error
estimate ∥∥Cor[δ ]− Ĉor[δu]J

∥∥
L2(Dref×Dref)

. 2−2JJ‖Cor[δu]‖H2
mix(Dref×Dref)

provided that the given data are sufficiently smooth.

The Galerkin discretization of (14) in the sparse tensor product space is now
rather similar to the approach in [18], where sparse multilevel frames, cf. [22], have
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been employed for the discretization. We can considerably improve this approach
by combining it with the idea from [20]: Instead of dealing with all combinations
which occur in the discretization by a sparse frame for each of the four subproblems
on Γref×Γref, on Dref×Γref, on Γref×Dref and in Dref×Dref, we shall employ the
combination technique, cf. [14]. Then, we have only to compute combinations of the
solution on two consecutive levels instead of all combinations.

The analogue to the ansatz (22) for the Galerkin approximation in the sparse
tensor product space reads

Ĉov[δu]J = ∑
j+ j′6J

∑
k∈I j

∑
k′∈I j′

û j, j′,k,k′(ϕ j,k⊗ϕ j′,k′)

= Ĉov[δu]
D,D

J + Ĉov[δu]
D,Γ

J + Ĉov[δu]
Γ ,D

J + Ĉov[δu]
Γ ,Γ

J

(24)

with

Ĉov[δu]
Λ ,Λ ′

J = ∑
j+ j′6J

∑
k∈I Λ

J

∑
k∈I Λ ′

J

û j, j′,k,k′(ϕ j,k⊗ϕ j′,k′)∈ ̂VΛ
J ⊗VΛ ′

J for Λ ,Λ ′ ∈{D,Γ }.

(25)
The basic idea of our approach is to define detail spaces with respect to Galerkin

projections in order to remove the redundancy in the ansatz for the subproblems (25).
We need thus the Galerkin projection Pj : H1

0 (Dref)→V D
j , w 7→ Pjw defined via(

∇(w−Pjw),∇v j
)

L2(Dref)
= 0 for all v j ∈V D

j

and the L2-orthogonal projection Q j : L2(Γref)→VΓ
j , w 7→ Q jw, defined via(

(w−Q jw),v j
)

L2(Γref)
= 0 for all v j ∈VΓ

j .

Furthermore, we introduce the related detail projections

Θ
D
j := Pj−Pj−1, where P−1 := 0

and
Θ

Γ
j := Q j−Q j−1, where Q−1 := 0.

With the detail projections at hand, we define the related detail spaces

W D
j :=Θ

D
j H1

0 (Dref) = (Pj−Pj−1)H1
0 (Dref)⊂V D

j

and
WΓ

j :=Θ
Γ
j L2(Γ ) = (Q j−Q j−1)L2(Γ )⊂VΓ

j .

Obviously, it holds VΛ
j =VΛ

j−1⊕WΛ
j for Λ ∈ {D,Γ }. This gives rise to the decom-

positions
VΛ

J =WΛ
0 ⊕WΛ

1 ⊕ . . .⊕WΛ
J for Λ ∈ {D,Γ }.
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Especially, these decompositions are orthogonal with respect to their defining inner
products.

Lemma 2. It holds

(∇w j,∇w j′)L2(Dref)
= 0 for w j ∈W D

j , w j′ ∈W D
j′ and j′ 6= j

as well as

(w j,w j′)L2(Dref)
= 0 for w j ∈WΓ

j , w j′ ∈WΓ

j′ and j 6= j′.

Proof. We show the assertion for the spaces W D
j . The proof for the spaces WΓ

j is
analogous. Without loss of generality, let j > j′. Otherwise, due to the symmetry of
the inner products, we may interchange the roles of j and j′. Let w j =Θ jv ∈WΓ

j for
some v ∈ H1

0 (Dref) and w j′ ∈WΓ

j′ ⊂VΓ

j′ . Then, since j−1 > j′, we have that

(∇Pjv,∇w j′)L2(Dref)
= (∇v,∇w j′)L2(Dref)

and
(∇Pj−1v,∇w j′)L2(Dref)

= (∇v,∇w j′)L2(Dref)
.

Thus, we obtain

(∇w j,∇w j′)L2(Dref)
= (∇Pjv,∇w j′)L2(Dref)

− (∇Pj−1v,∇w j′)L2(Dref)

= (∇v,∇w j′)L2(Dref)
− (∇v,∇w j′)L2(Dref)

= 0.

ut

Now, we shall rewrite the sparse tensor product spaces given by (23) according to

̂VΛ
J ⊗VΛ ′

J = ∑
j+ j′=J

VΛ
j ⊗VΛ ′

j′ = ∑
j+ j′=J

( j⊕
i=0

WΛ
i

)
⊗VΛ ′

j′ =
J⊕

j=0

WΛ
j ⊗VΛ ′

J− j.

By exploiting the symmetry in this expression, we have also

̂VΛ
J ⊗VΛ ′

J =
J⊕

j=0

WΛ
j ⊗VΛ ′

J− j =
J⊕

j=0

VΛ
j ⊗WΛ ′

J− j.

Thus, fixing a basis ψ j,k ∈WΛ
j for Λ ∈ {D,Γ }, we have for the subproblems (25)

the formulation

Ĉov[δu]
Λ ,Λ ′

J =
J⊕

j=0
∑

k∈I Λ
J

∑
k∈I Λ ′

J− j

û j,J− j,k,k′(ψ j,k⊗ϕJ− j,k′) for Λ ,Λ ′ ∈ {D,Γ }.

(26)
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Taking further into account the orthogonality described by Lemma 2, we can show

that the computation of Ĉov[δu]
Λ ,Λ ′

J for Λ ,Λ ′ ∈ {D,Γ } decouples into independent
subproblems.

Lemma 3. Let Λ ,Λ ′ ∈ {D,Γ }. For v̂ j ∈WΛ
j ⊗VΛ ′

J− j and v̂ j′ ∈WΛ

j′ ⊗VΛ ′
J− j′ , there

holds
aΛ ,Λ ′(v̂ j, v̂ j′) = 0 if j 6= j′.

Proof. We show the proof for the case Λ = Γ and Λ ′ = D. The other cases are
analogous, see also [20, Lemma 6]. Assume that

v̂ j = ∑
i∈I

αi(ψ j,i⊗ϕJ− j,i) and v̂ j′ = ∑
i∈I ′

βi(ψ j′,i⊗ϕJ− j′,i)

is a representation of v̂ j ∈WΓ
j ⊗V D

J− j and v̂ j′ ∈WΓ

j′ ⊗V D
J− j′ , respectively, for some

finite index sets I ,I ′ ⊂ N. Then, we obtain

aΓ ,D(v̂ j, v̂ j′)

=

(
(Id⊗∇) ∑

i∈I
αi(ψ j,i⊗ϕJ− j,i),(Id⊗∇) ∑

i′∈I ′
βi(ψ j′,i′ ⊗ϕJ− j′,i′)

)
L2(Γref×Dref)

= ∑
i∈I

∑
i′∈I ′

αiβi′(ψ j,i,ψ j′,i′)L2(Γref)
(∇ϕJ− j,i,∇ϕJ− j′,i′)L2(Dref)

= 0

whenever j 6= j′ due to Lemma 2. ut

This lemma tells us that, given Ĉov[δu]
Γ ,Γ

J , the computation of Ĉov[δu]
Λ ,Λ ′

J for
Λ ,Λ ′ ∈ {D,Γ } decouples into J+1 subproblems. It holds

Ĉov[δu]
Λ ,Λ ′

J =
J

∑
j=0

v̂ j,

where v̂ j ∈WΛ
j ⊗VΛ ′

J− j is the solution to the following Galerkin formulation:

Find v̂ j ∈WΛ
j ⊗VΛ ′

J− j such that

aΛ ,Λ ′(v̂ j, ŵ) = rhsΛ ,Λ ′(ŵ) for all ŵ ∈WΛ
j ⊗VΛ ′

J− j.

Herein, we set

rhsΛ ,Λ ′(ŵ) :=


−aD,Γ

(
Ĉov[δu]

Γ ,Γ

J , ŵ
)
, Λ =D, Λ ′=Γ ,

−aΓ ,D
(
Ĉov[δu]

Γ ,Γ

J , ŵ
)
, Λ =Γ , Λ ′=D,

−aD,D
(
Ĉov[δu]

D,Γ

J +Ĉov[δu]
Γ ,D

J +Ĉov[δu]
Γ ,Γ

J , ŵ
)
, Λ =D, Λ ′=D.

(27)
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By taking into account the definition of the detail spaces, we end up with the final
representation of the solution to (14) in the sparse tensor product space, which is
known as the combination technique.

Theorem 5. Given Ĉov[δu]
Γ ,Γ

J , the computation of Ĉov[δu]
Λ ,Λ ′

J for Λ ,Λ ′ ∈ {D,Γ }
decouples as follows. It holds

Ĉov[δu]
Λ ,Λ ′

J =
J

∑
j=0

p j,J− j− p j−1,J− j, (28)

where p j,J− j ∈VΛ
j ⊗VΛ ′

J− j and p j−1,J− j ∈VΛ
j−1⊗VΛ ′

J− j satisfy the following subprob-
lems which are defined relative to full tensor product spaces:

Find p j, j′ ∈VΛ
j ⊗VΛ ′

j′ such that

aΛ ,Λ ′(p j, j′ ,q j, j′) = rhsΛ ,Λ ′(q j, j′) for all q j, j′ ∈VΛ
j ⊗VΛ ′

j′ .

Here, the right hand side is given according to (27).

Proof. The proof of this theorem is a consequence of the previous lemma together
with the definition of the detail spaces WΛ

j for Λ ∈ {D,Γ }. ut

7 Numerical implementation

Our numerical realization heavily relies on the sparse frame discretization of the
model problem as presented in [18]. Nevertheless, in contrast to this work, we make
here use of the fact, that we already obtain a sparse tensor product representation of
the solution if we have the representations in the spaces Vj⊗VJ− j and Vj−1⊗VJ− j.
This means that it is sufficient to compute the diagonal ( j,J− j) for j = 0, . . . ,J and
the subdiagonal ( j,J− j−1) for j = 0, . . . ,J−1 of a sparse frame representation.
Moreover, each block in this representation corresponds to the solution of a tensor
product subproblem as stated in Theorem 5. The corresponding right hand sides are
obtained by means of the matrix-vector product in the frame representation. There-
fore, in this context, the combination technique can be considered as an improved
solver for the approach presented in [18], which results in a remarkable speed-up. In
the sequel, we describe this approach in detail.

We start by discretizing the Dirichlet data. The proceeding is as considered in
[17]. Setting J0 := I Γ

0 and J j := I Γ
j \I Γ

j−1 for j > 0, the hierarchical basis in
span{ϕ j,k ∈Vj : k ∈I Γ

j } is given by
⋃J

j=0{ϕ j,k}k∈J j . We replace the normal part
of the covariance by its piecewise linear sparse grid interpolant, cf. [4],

〈n(x),Cov[V]n(y)〉 ≈
(

∑
j+ j′≤J

∑
k∈J j

∑
k′∈J j′

γ( j,k),( j′,k′)(ϕ j,k⊗ϕ j′,k′)

)∣∣∣∣
Γref×Γref

.
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Thus, the coefficient vector g j, j′ of the Dirichlet data becomes

g j, j′ = ∑
`+`′≤J

(B j,`⊗B j′,`′)[γ(`,k),(`′,k′)]k∈J j ,k′∈J j′
, (29)

where the matrices B j, j′ are given by

B j, j′ =

[
aΓ

(
∂u
∂n

ϕ j,k,ϕ j′,k′

)]
k∈I j ,k′∈J j′

, 0≤ j, j′ ≤ J.

The expression (29) can be evaluated in optimal complexity by applying the
matrix-vector multiplication from [43]. Nevertheless, for the sake of an easier im-
plementation, we employ here the matrix-vector multiplication from [22], which is
optimal up to logarithmic factors. In particular, by using prolongations and restric-
tions, the matrices B j, j′ have to be provided only for the case j = j′. Thus, having all
right hand sides at hand, we can solve next

(G j⊗G j′)p
Γ ,Γ
j, j′ = g j, j′

for all indices satisfying j′ = J− j or j′ = J− j− 1. With these coefficients, we
determine the right hand sides for the problems on Dref×Γref and Γref×Dref according
to

fD,Γ
j, j′ =− ∑

`+`′≤J
(SΓ

j,`⊗G j′,`′)p
Γ ,Γ
`,`′ and fΓ ,D

j, j′ =− ∑
`+`′≤J

(G j,`⊗SΓ

j′,`′)p
Γ ,Γ
`,`′ ,

where the matrices SΓ

j, j′ and G j, j′ are given by

SΓ

j, j′ =
[
aD(ϕ j′,`,ϕ j,k)

]
k∈I D

j , `∈I Γ

j′

G j, j′ =
[
aΓ (ϕ j′,`,ϕ j,k)

]
k∈I Γ

j , `∈I Γ

j′

 0≤ j, j′ ≤ J.

Notice that we have SΓ
j, j = SΓ

j and G j, j = G j, cf. (18) and (19). Now, we can solve

(SD
j ⊗G j′)p

D,Γ
j, j′ = fD,Γ

j, j′ and (G j⊗SD
j′)p

Γ ,D
j, j′ = fΓ ,D

j, j′

for all indices satisfying j′ = J− j or j′ = J− j−1.
From the solutions pD,Γ

j, j′ and pΓ ,D
j, j′ , we can finally determine the right hand sides

fD,D
j, j′ =− ∑

`+`′≤J
(SΓ

j,`⊗SΓ

j′,`′)p
Γ ,Γ
`,`′ +(SD

j,`⊗SΓ

j′,`′)p
D,Γ
`,`′ +(SΓ

j,`⊗SD
j′,`′)p

Γ ,D
`,`′ ,

where the matrices SD
j, j′ are given by

SD
j, j′ =

[
aD(ϕ j′,`,ϕ j,k)

]
k∈I D

j , `∈I D
j′
, 0≤ j, j′ ≤ J.
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It remains to compute the solutions to

(SD
j ⊗SD

j′)p
D,D
j, j′ = fD,D

j, j′

for all indices satisfying j′ = J− j or j′ = J− j−1.
Appropriate tensorization of the BPX-preconditioner, cf. [3], yields an asymp-

totically optimal preconditioning for each of the preceding linear systems, cf. [22,
Theorem 7]. Consequently, the computational complexity for their solution is linear,
which means it is of the order O(2( j+ j′)d). Moreover, the right hand sides fΛ ,Λ ′

j, j′ for
Λ ,Λ ′ ∈ {D,Γ } can be computed by the algorithm proposed in [43] with an effort of
O(J2dJ). We thus obtain the following result:

Theorem 6. The cost of computing the Galerkin solution Ĉor[δu]J via the expansion
(28) is of optimal order O(J2dJ).

Proof. For each 0 ≤ j ≤ J and Λ ,Λ ′ ∈ {D,Γ }, the cost to determine pΛ ,Λ ′

j,J− j and

pΛ ,Λ ′

j−1,J− j is of order O(2dJ). Summing over j yields immediately the assertion. ut

8 Numerical results

To demonstrate the described method, we consider an analytical example on the
one hand and a stochastic example on the other hand. In the latter, for a given
random domain perturbation described by the random vector field V, we compute
the approximate mean u in accordance with (10) and the approximate covariance
Cov[δu] in accordance with (14). All computations are carried out on a computing
server with two Intel(R) Xeon(R) X5550 CPUs with a clock rate of 2.67GHz and
48GB of main memory. The computations have been performed single-threaded, i.e.
on a single core.

8.1 An analytical example

In this analytical example, we want to validate the convergence rates of the combi-
nation technique for the sparse tensor product solution of tensor product Dirichlet
problems. To that end, consider the tensor product boundary value problem

(∆ ⊗∆)u = 0 in Dref×Dref,

(∆ ⊗ γ
int
0 )u = 0 in Dref×Γref,

(γ int
0 ⊗∆)u = 0 in Γref×Dref,

(γ int
0 ⊗ γ

int
0 )u = g1⊗g2 on Γref×Γref,

(30)
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Fig. 1 Trace u|x=y of the solution u to (30).

where Dref = {x ∈ R2 : ‖x‖2 < 1} is the two-dimensional unit disk. We choose g1
and g2 to be the traces of harmonic functions. More precisely, we set

g1(x)=x2
1− x2

2 and g2(x)=−
1

2π
log
(√

(x1−2)2 +(x2−2)2
)

for x ∈ Γref.

Then, the solution u is simply given by the product

u(x,y) =− 1
2π

(x2
1− x2

2) log
(√

(y1−2)2 +(y2−2)2
)
.

A visualization of the trace u|x=y of this function is found in Figure 1.
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Fig. 2 Relative L2-error (left) and computation times (right) of the combination technique in case
of the analytic example.

The convergence plot on the left of Figure 2 shows that the relative L2-error, indi-
cated by the blue line, exhibits almost the convergence rate predicted in Corollary 1,
indicated by the black dashed line. On level 10, there are about 2.1 million degrees
of freedom in each variable, which is, up to a logarithmic factor, the number of
degrees of freedom appearing in the discretization by the combination technique.
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Vice versa, a full tensor product discretization on this level would result in about
4.4 ·1012 degrees of freedom, which is no more feasible.

The plot on the right hand side of Figure 2 depicts the related computational times.
For comparison, we have added here the computational times for the sparse tensor
product frame discretization from [18]. The related curve is indicated in green. The
computational time consumed by the combination technique is represented by the
red curve. Notice that we have set up both methods such that they provide similar
accuracies for the approximation of the solution. From level 3 to 9, the combination
technique is in average a factor 30 faster than the frame discretization, where the
speed-up is growing when the level increases. Nevertheless, it seems that, from level
7 on, both methods do not achieve the theoretical rate of J34J anymore.

We present in the plot on the right hand side of Figure 2 also the time consumed for
exclusively computing the appropriate right hand sides for the combination technique,
indicated by the blue line. As can be seen, on the higher levels, this computation
takes nearly half of the total computational time. A potential improvement could thus
be made by using the matrix-vector product from [43]. Finally, we have plotted the
time which is needed for exclusively solving the linear systems by the tensor product
solver. Here, it seems that we have the optimal behavior of order J4J up to level 7.
Then, also this rate deteriorates.

8.2 The Poisson equation on the random unit disc

Fig. 3 Solution u (left) and variance V[δu] (right) on the unit disc.

For this example, we consider Dref = {x ∈ R2 : ‖x‖2 < 1} as reference domain
and the load is set to f (x)≡ 1. The random vector field V is provided by its mean
E[V](x) = x and its covariance function

Cov[V](x,y) =
ε2

125

[
5exp(−4‖x−y‖2

2) exp(−0.1‖2x−y‖2
2)

exp(−0.1‖x−2y‖2
2) 5exp(−‖x−y‖2

2)

]
.



Combination technique based second moment analysis 23

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1

2

3

4

x 10
−4

ε

e
rr

o
r

 

 

l
∞
−error

quadratic fit

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

1

2

3

4

5

6

7

x 10
−7

ε

e
rr

o
r

 

 

l
∞
−error

cubic fit

Fig. 4 Error in E[u] (left) and V[u] (right) for increasing values of ε on K.

In Figure 3, a visualization of the solution u to (10) (left) and the variance V[δu] of
the solution to (14) (right) is depicted. In order to validate the computational method,
we consider a reference solution computed with a quasi-Monte Carlo method based
on Halton points. To that end, we have solved the Poisson equation on 104 realizations
of the random parameter on level J = 7 (this corresponds to 65536 finite elements).
The solutions obtained have then been interpolated on a mesh on level J = 5 (this
corresponds to 4096 finite elements) for the compactum K = {x ∈ R2 : ‖x‖2 6 0.8}.
For the combination technique, we set J = 7 for the computation of the mean and
J = 9 for the computation of the variance. The related error plots for combination
technique with respect to different values of ε are shown in Figure 4, where we used
the `∞-norm to measure the error. As can be seen, the error in the mean, found on the
left hand side of the figure, exhibits exactly the expected quadratic behavior, whereas
the error in the variance, found on the right hand side of the figure, shows exactly a
cubic rate.
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