3,974 research outputs found

    Comment on the equivalence of Bakamjian-Thomas mass operators in different forms of dynamics

    Full text link
    We discuss the scattering equivalence of the generalized Bakamjian-Thomas construction of dynamical representations of the Poincar\'e group in all of Dirac's forms of dynamics. The equivalence was established by Sokolov in the context of proving that the equivalence holds for models that satisfy cluster separability. The generalized Bakamjian Thomas construction is used in most applications, even though it only satisfies cluster properties for systems of less than four particles. Different forms of dynamics are related by unitary transformations that remove interactions from some infinitesimal generators and introduce them to other generators. These unitary transformation must be interaction dependent, because they can be applied to a non-interacting generator and produce an interacting generator. This suggests that these transformations can generate complex many-body forces when used in many-body problems. It turns out that this is not the case. In all cases of interest the result of applying the unitary scattering equivalence results in representations that have simple relations, even though the unitary transformations are dynamical. This applies to many-body models as well as models with particle production. In all cases no new many-body operators are generated by the unitary scattering equivalences relating the different forms of dynamics. This makes it clear that the various calculations used in applications that emphasize one form of the dynamics over another are equivalent. Furthermore, explicit representations of the equivalent dynamical models in any form of dynamics are easily constructed. Where differences do appear is when electromagnetic probes are treated in the one-photon exchange approximation. This approximation is different in each of Dirac's forms of dynamics.Comment: 6 pages, no figure

    Understanding Anomalous Transport in Intermittent Maps: From Continuous Time Random Walks to Fractals

    Full text link
    We show that the generalized diffusion coefficient of a subdiffusive intermittent map is a fractal function of control parameters. A modified continuous time random walk theory yields its coarse functional form and correctly describes a dynamical phase transition from normal to anomalous diffusion marked by strong suppression of diffusion. Similarly, the probability density of moving particles is governed by a time-fractional diffusion equation on coarse scales while exhibiting a specific fine structure. Approximations beyond stochastic theory are derived from a generalized Taylor-Green-Kubo formula.Comment: 4 pages, 3 eps figure

    Hand-Modelled Composite Prostheses after Resection of Peri-Acetabular Bone Malignancies

    Get PDF
    Purpose: To improve function after pelvic resection involving the acetabulum, using an anatomic composite implant built with screws and cement

    Phase transitions in open quantum systems

    Get PDF
    We consider the behaviour of open quantum systems in dependence on the coupling to one decay channel by introducing the coupling parameter α\alpha being proportional to the average degree of overlapping. Under critical conditions, a reorganization of the spectrum takes place which creates a bifurcation of the time scales with respect to the lifetimes of the resonance states. We derive analytically the conditions under which the reorganization process can be understood as a second-order phase transition and illustrate our results by numerical investigations. The conditions are fulfilled e.g. for a picket fence with equal coupling of the states to the continuum. Energy dependencies within the system are included. We consider also the generic case of an unfolded Gaussian Orthogonal Ensemble. In all these cases, the reorganization of the spectrum occurs at the critical value αcrit\alpha_{crit} of the control parameter globally over the whole energy range of the spectrum. All states act cooperatively.Comment: 28 pages, 22 Postscript figure

    Magneto-Optical Trap for Thulium Atoms

    Full text link
    Thulium atoms are trapped in a magneto-optical trap using a strong transition at 410 nm with a small branching ratio. We trap up to 7×1047\times10^{4} atoms at a temperature of 0.8(2) mK after deceleration in a 40 cm long Zeeman slower. Optical leaks from the cooling cycle influence the lifetime of atoms in the MOT which varies between 0.3 -1.5 s in our experiments. The lower limit for the leaking rate from the upper cooling level is measured to be 22(6) s−1^{-1}. The repumping laser transferring the atomic population out of the F=3 hyperfine ground-state sublevel gives a 30% increase for the lifetime and the number of atoms in the trap.Comment: 4 pages, 6 figure

    Anharmonicity of BaTiO_3 single crystals

    Full text link
    By analyzing the dielectric non-linearity with the Landau thermodynamic expansion, we find a simple and direct way to assess the importance of the eighth order term. Following this approach, it is demonstrated that the eighth order term is essential for the adequate description of the para/ferroelectric phase transition of BaTiO_3. The temperature dependence of the quartic coefficient \beta is accordingly reconsidered and is strongly evidenced by the change of its sign above 165 C. All these findings attest to the strong polarization anharmonicity of this material, which is unexpected for classical displacive ferroelectrics.Comment: 4 figures, to be published in Phys. Rev.

    Structure and intramolecular mobility of N-(phosphoryl)-or N-(thiophosphoryl)amides and -thioamides: VIII. Structure of N-(thiophosphoryl)-S-organylbenzimidothioates by NMR spectroscopy

    Get PDF
    N-(Diisopropoxythiophosphoryl)-and N-(diisopropoxyphosphoryl)-S-organylbenzimidothioates, which contain one and two imidothiol fragments, are structurally homogeneous in solutions. Cis arrangement of the Ph and P(X)(OPr-i)2 substituents about the C=N bond (E isomer) was deduced from the 3JPNCC constants

    Integrable matrix equations related to pairs of compatible associative algebras

    Full text link
    We study associative multiplications in semi-simple associative algebras over C compatible with the usual one. An interesting class of such multiplications is related to the affine Dynkin diagrams of A, D, E-type. In this paper we investigate in details the multiplications of the A-type and integrable matrix ODEs and PDEs generated by them.Comment: 12 pages, Late
    • …
    corecore