548 research outputs found

    Hidden Symmetry from Supersymmetry in One-Dimensional Quantum Mechanics

    Get PDF
    When several inequivalent supercharges form a closed superalgebra in Quantum Mechanics it entails the appearance of hidden symmetries of a Super-Hamiltonian. We examine this problem in one-dimensional QM for the case of periodic potentials and potentials with finite number of bound states. After the survey of the results existing in the subject the algebraic and analytic properties of hidden-symmetry differential operators are rigorously elaborated in the Theorems and illuminated by several examples

    Resolutions of Identity for Some Non-Hermitian Hamiltonians. I. Exceptional Point in Continuous Spectrum

    Full text link
    Resolutions of identity for certain non-Hermitian Hamiltonians constructed from biorthogonal sets of their eigen- and associated functions are given for the spectral problem defined on entire axis. Non-Hermitian Hamiltonians under consideration possess the continuous spectrum and the following peculiarities are investigated: (1) the case when there is an exceptional point of arbitrary multiplicity situated on a boundary of continuous spectrum; (2) the case when there is an exceptional point situated inside of continuous spectrum. The reductions of the derived resolutions of identity under narrowing of the classes of employed test functions are revealed. It is shown that in the case (1) some of associated functions included into the resolution of identity are normalizable and some of them may be not and in the case (2) the bounded associated function corresponding to the exceptional point does not belong to the physical state space. Spectral properties of a SUSY partner Hamiltonian for the Hamiltonian with an exceptional point are examined

    Perfectly conducting incompressible fluid model of a wire array implosion

    Full text link
    An incompressible perfectly conducting magnetohydrodynamic model is applied to describe a multiwire array implosion on the (r,θ)(r,θ) plane using the theory of analytic functions. The plasma columns emerging from the electrical explosion of individual wires move and change the shape of their cross section in the magnetic field produced by the currents flowing on the surfaces of the columns and closing through a cylindrical return current can. Geometry of both the “global” and “private” magnetic fields and self-consistent distributions of the electric currents on the conducting surfaces are determined for any wire array configuration including nested wire arrays, wires close to the return current can, etc. The coupled equations of motion and magnetostatics for an essentially two-dimensional problem are reduced to one-dimensional parametric governing equations, written for the boundary of the fluid contours. The implosion dynamics is shown to be driven by a competition between the implosion pressure, making the array converge to the axis as a set of individual plasma columns, and the tidal pressure that makes the wires merge, forming an annular conducting shell. Their relative roles are determined by the gap-to-diameter ratio πRc(t)/NRw(t).πRc(t)/NRw(t). If this ratio is large at early time, then the array implodes as a set of individual plasma columns. Otherwise, when the ratio is about π or less, the tidal forces prevail, and the plasma columns tend to form a shell-like configuration before they start converging to the axis of the array. The model does not allow the precursor plasma streams to be ejected from the wires to the axis, indicating that this process is governed by the finite plasma conductivity and could only be described with a proper conductivity model. © 2002 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70839/2/PHPAEN-9-4-1366-1.pd

    Relaxation Properties of Small-World Networks

    Full text link
    Recently, Watts and Strogatz introduced the so-called small-world networks in order to describe systems which combine simultaneously properties of regular and of random lattices. In this work we study diffusion processes defined on such structures by considering explicitly the probability for a random walker to be present at the origin. The results are intermediate between the corresponding ones for fractals and for Cayley trees.Comment: 16 pages, 6 figure

    Bound-state beta-decay of a neutron in a strong magnetic field

    Full text link
    The beta-decay of a neutron into a bound (pe)(pe^-) state and an antineutrino in the presence of a strong uniform magnetic field (B1013B \gtrsim 10^{13} G) is considered. The beta-decay process is treated within the framework of the standard model of weak interactions. A Bethe-Salpeter formalism is employed for description of the bound (pe)(pe^-) system in a strong magnetic field. For the field strengths 101310^{13} GB1018 \lesssim B \lesssim10^{18} G the estimate for the ratio of the bound-state decay rate wbw_b and the usual (continuum-state) decay rate wcw_c is derived. It is found that in such strong magnetic fields wb/wc0.10.4w_b/w_c \sim 0.1-0.4. This is in contrast to the field-free case, where wb/wc4.2×106w_b/w_c \simeq 4.2 \times 10^{-6} [J. N. Bahcall, Phys. Rev. {\bf 124}, 495 (1961); L. L. Nemenov, Sov. J. Nucl. Phys. {\bf 15}, 582 (1972); X. Song, J. Phys. G: Nucl. Phys. {\bf 13}, 1023 (1987)]. The dependence of the ratio wb/wcw_b/w_c on the magnetic field strength BB exhibits a logarithmic-like behavior. The obtained results can be important for applications in astrophysics and cosmology.Comment: 22 pages (revtex4), 1 figure; v2: more detailed discussion on astrophysical applications in conclusion section, accepted for publication in Phys. Rev.

    Modeling of the Lattice Dynamics in Strontium Titanate Films of Various Thicknesses: Raman Scattering Studies

    Get PDF
    This paper is partly based upon COST (European Cooperation in Science and Technology) Action 18234 (E.A.K., M.S., and V.K.) and financially supported by FLAG-ERA JTC project To2Dox (Y.A.M). The Institute of Solid State Physics, University of Latvia (Latvia), as the Centre of Excellence has received funding from the European Union’s Horizon 2020 Frame-work Programme H2020-WIDESPREAD-01-2016-2017-Teaming Phase2 under grant agreement No. 739508, project CAMART2. The computer resources were provided by the High-Performance Computing Centre Stuttgart (HLRS project DEFTD 12939). In addition, the research of V.K. and A.P. was partly supported by the RADON project (GA 872494) within the H2020-MSCA-RISE-2019 call.While the bulk strontium titanate (STO) crystal characteristics are relatively well known, ultrathin perovskites’ nanostructure, chemical composition, and crystallinity are quite complex and challenging to understand in detail. In our study, the DFT methods were used for modelling the Raman spectra of the STO bulk (space group I4/mcm) and 5–21-layer thin films (layer group p4/mbm) in tetragonal phase with different thicknesses ranging from ~0.8 to 3.9 nm. Our calculations revealed features in the Raman spectra of the films that were absent in the bulk spectra. Out of the seven Raman-active modes associated with bulk STO, the frequencies of five modes (2Eg, A1g, B2g, and B1g) decreased as the film thickness increased, while the low-frequency B2g and higher-frequency Eg modes frequencies increased. The modes in the films exhibited vibrations with different amplitudes in the central or surface parts of the films compared to the bulk, resulting in frequency shifts. Some peaks related to bulk vibrations were too weak (compared to the new modes related to films) to distinguish in the Raman spectra. However, as the film thickness increased, the Raman modes approached the frequencies of the bulk, and their intensities became higher, making them more noticeable in the Raman spectrum. Our results could help to explain inconsistencies in the experimental data for thin STO films, providing insights into the behavior of Raman modes and their relationship with film thickness. © 2023 by the authors. --//-- Krasnenko V., Platonenko A., Liivand A., Rusevich L.L., Mastrikov Y.A., Zvejnieks G., Sokolov M., Kotomin E.A.; Modeling of the Lattice Dynamics in Strontium Titanate Films of Various Thicknesses: Raman Scattering Studies; (2023) Materials, 16 (18), art. no. 6207; DOI: 10.3390/ma16186207; https://www.scopus.com/inward/record.uri?eid=2-s2.0-85172725318&doi=10.3390%2fma16186207&partnerID=40&md5=32f343f9cb8da145c6647566cb534c32. Published under the CC BY 4.0 license.COST Action 18234 and FLAG-ERA JTC project To2Dox. The Institute of Solid State Physics, University of Latvia (Latvia), as the Centre of Excellence has received funding from the European Union’s Horizon 2020 Frame-work Programme H2020-WIDESPREAD-01-2016-2017-Teaming Phase2 under grant agreement No. 739508, project CAMART2. HLRS project DEFTD 12939. RADON project (GA 872494) within the H2020-MSCA-RISE-2019 call

    Quantum transport on two-dimensional regular graphs

    Get PDF
    We study the quantum-mechanical transport on two-dimensional graphs by means of continuous-time quantum walks and analyse the effect of different boundary conditions (BCs). For periodic BCs in both directions, i.e., for tori, the problem can be treated in a large measure analytically. Some of these results carry over to graphs which obey open boundary conditions (OBCs), such as cylinders or rectangles. Under OBCs the long time transition probabilities (LPs) also display asymmetries for certain graphs, as a function of their particular sizes. Interestingly, these effects do not show up in the marginal distributions, obtained by summing the LPs along one direction.Comment: 22 pages, 11 figure, acceted for publication in J.Phys.
    corecore