6,362 research outputs found

    Effects of Defects on Friction for a Xe Film Sliding on Ag(111)

    Full text link
    The effects of a step defect and a random array of point defects (such as vacancies or substitutional impurities) on the force of friction acting on a xenon monolayer film as it slides on a silver (111) substrate are studied by molecular dynamic simulations and compared with the results of lowest order perturbation theory in the substrate corrugation potential. For the case of a step, the magnitude and velocity dependence of the friction force are strongly dependent on the direction of sliding respect to the step and the corrugation strength. When the applied force F is perpendicular to the step, the film is pinned forF less than a critical force Fc. Motion of the film along the step, however, is not pinned. Fluctuations in the sliding velocity in time provide evidence of both stick-slip motion and thermally activated creep. Simulations done with a substrate containing a 5 percent concentration of random point defects for various directions of the applied force show that the film is pinned for the force below a critical value. The critical force, however, is still much lower than the effective inertial force exerted on the film by the oscillations of the substrate in experiments done with a quartz crystal microbalance (QCM). Lowest order perturbation theory in the substrate potential is shown to give results consistent with the simulations, and it is used to give a physical picture of what could be expected for real surfaces which contain many defects.Comment: 13 pages, 17 figures, latex plus postscript files for figure

    Anomalous pinning behavior in an incommensurate two-chain model of friction

    Full text link
    Pinning phenomena in an incommensurate two-chain model of friction are studied numerically. The pinning effect due to the breaking of analyticity exists in the present model. The pinning behavior is, however, quite different from that for the breaking of analyticity state of the Frenkel-Kontorova model. When the elasticity of chains or the strength of interchain interaction is changed, pinning force and maximum static frictional force show anomalously complicated behavior accompanied by a successive phase transition and they vanish completely under certain conditions.Comment: RevTex, 9 pages, 19 figures, to appear in Phys. Rev. B58 No.23(1998

    Dry Friction due to Adsorbed Molecules

    Full text link
    Using an adiabatic approximation method, which searches for Tomlinson model-like instabilities for a simple but still realistic model for two crystalline surfaces in the extremely light contact limit, with mobile molecules present at the interface, sliding relative to each other, we are able to account for the virtually universal occurrence of "dry friction." The model makes important predictions for the dependence of friction on the strength of the interaction of each surface with the mobile molecules.Comment: four pages of latex, figure provide

    Amplitude analysis of four-body decays using a massively-parallel fitting framework

    Full text link
    The GooFit Framework is designed to perform maximum-likelihood fits for arbitrary functions on various parallel back ends, for example a GPU. We present an extension to GooFit which adds the functionality to perform time-dependent amplitude analyses of pseudoscalar mesons decaying into four pseudoscalar final states. Benchmarks of this functionality show a significant performance increase when utilizing a GPU compared to a CPU. Furthermore, this extension is employed to study the sensitivity on the D0Dˉ0D^0 - \bar{D}^0 mixing parameters xx and yy in a time-dependent amplitude analysis of the decay D0K+ππ+πD^0 \rightarrow K^+\pi^-\pi^+\pi^-. Studying a sample of 50 000 events and setting the central values to the world average of x=(0.49±0.15)%x = (0.49 \pm0.15) \% and y=(0.61±0.08)%y = (0.61 \pm0.08) \%, the statistical sensitivities of xx and yy are determined to be σ(x)=0.019%\sigma(x) = 0.019 \% and σ(y)=0.019%\sigma(y) = 0.019 \%.Comment: Proceedings of the 22nd International Conference on Computing in High Energy and Nuclear Physics, CHEP 201

    Static and dynamic properties of frictional phenomena in a one-dimensional system with randomness

    Full text link
    Static and dynamic frictional phenomena at the interface with random impurities are investigated in a two-chain model with incommensurate structure. Static frictional force is caused by the impurity pinning and/or by the pinning due to the regular potential, which is responsible for the breaking of analyticity transition for impurity-free cases. It is confirmed that the static frictional force is always finite in the presence of impurities, in contrast to the impurity-free system. The nature of impurity pinning is discussed in connection with that in density waves. The kinetic frictional force of a steady sliding state is also investigated numerically. The relationship between the sliding velocity dependence of the kinetic frictional force and the strength of impurity potential is discussed.Comment: RevTex, 14 pages, 6 PostScript figures, to appear in Phys. Rev.

    Static Friction between Elastic Solids due to Random Asperities

    Full text link
    Several workers have established that the Larkin domains for two three dimensional nonmetallic elastic solids in contact with each other at a disordered interface are enormously large. This implies that there should be negligible static friction per unit area in the macroscopic solid limit. The present work argues that the fluctuations in the heights of the random asperities at the interface that occur in the Greenwood-Williamson model can account for static friction.Comment: Contains some improvements in the treatment of the subjec

    Static and Dry Friction due to Multiscale Surface Roughness

    Full text link
    It is shown on the basis of scaling arguments that a disordered interface between two elastic solids will quite generally exhibit static and "dry friction" (i.e., kinetic friction which does not vanish as the sliding velocity approaches zero), because of Tomlinson model instabilities that occur for small length scale asperities. This provides a possible explanation for why static and "dry" friction are virtually always observed, and superlubricity almost never occurs

    Strongly Temperature Dependent Sliding Friction for a Superconducting Interface

    Full text link
    A sudden drop in mechanical friction, between an adsorbed nitrogen monolayer and a lead substrate, occurs when the lead passes through the superconducting transition temperature. We attribute this effect to a sudden drop at the superconducting transition temperature of the substrate Ohmic heating. The Ohmic heating is due to the electronic screening current that results from the sliding adsorbed film.Comment: Revte

    Breakdown of a conservation law in incommensurate systems

    Get PDF
    We show that invariance properties of the Lagrangian of an incommensurate system, as described by the Frenkel Kontorova model, imply the existence of a generalized angular momentum which is an integral of motion if the system remains floating. The behavior of this quantity can therefore monitor the character of the system as floating (when it is conserved) or locked (when it is not). We find that, during the dynamics, the non-linear couplings of our model cause parametric phonon excitations which lead to the appearance of Umklapp terms and to a sudden deviation of the generalized momentum from a constant value, signalling a dynamical transition from a floating to a pinned state. We point out that this transition is related but does not coincide with the onset of sliding friction which can take place when the system is still floating.Comment: 7 pages, 6 figures, typed with RevTex, submitted to Phys. Rev. E Replaced 27-03-2001: changes to text, minor revision of figure
    corecore