158 research outputs found

    The Effects of Overexpression of Histamine Releasing Factor (HRF) in a Transgenic Mouse Model

    Get PDF
    Asthma is a disease that affects all ages, races and ethnic groups. Its incidence is increasing both in Westernized countries and underdeveloped countries. It involves inflammation, genetics and environment and therefore, proteins that exacerbate the asthmatic, allergic phenotype are important. Our laboratory purified and cloned a histamine releasing factor (HRF) that was a complete stimulus for histamine and IL-4 secretion from a subpopulation of allergic donors' basophils. Throughout the course of studying HRF, it was uncovered that HRF enhances or primes histamine release and IL-13 production from all anti-IgE antibody stimulated basophils. In order to further delineate the biology of HRF, we generated a mouse model.We constructed an inducible transgenic mouse model with HRF targeted to lung epithelial cells, via the Clara cells. In antigen naïve mice, overproduction of HRF yielded increases in BAL macrophages and statistical increases in mRNA levels for MCP-1 in the HRF transgenic mice compared to littermate controls. In addition to demonstrating intracellular HRF in the lung epithelial cells, we have also been able to document HRF's presence extracellularly in the BAL fluid of these transgenic mice. Furthermore, in the OVA challenged model, we show that HRF exacerbates the allergic, asthmatic responses. We found statistically significant increases in serum and BAL IgE, IL-4 protein and eosinophils in transgenic mice compared to controls.This mouse model demonstrates that HRF expression enhances allergic, asthmatic inflammation and can now be used as a tool to further dissect the biology of HRF

    Infliximab Induces Clonal Expansion of γδ-T Cells in Crohn's Disease: A Predictor of Lymphoma Risk?

    Get PDF
    BACKGROUND: Concominant with the widespread use of combined immunotherapy in the management of Crohn's disease (CD), the incidence of hepato-splenic gamma-delta (γδ)-T cell lymphoma has increased sharply in CD patients. Malignant transformation of lymphocytes is believed to be a multistep process resulting in the selection of malignant γδ-T cell clones. We hypothesised that repeated infusion of anti-TNF-α agents may induce clonal selection and that concurrent treatment with immunomodulators further predisposes patients to γδ-T cell expansion. METHODOLOGY/PRINCIPAL FINDINGS: We investigated dynamic changes in the γδ-T cells of patient with CD following treatment with infliximab (Remicade®; n=20) or adalimumab (Humira®; n=26) using flow cytometry. In patients with a high γδ-T cell level, the γδ-T cells were assessed for clonality. Of these 46 CD patients, 35 had a γδ-T cells level (mean 1.6%) comparable to healthy individuals (mean 2.2%), and 11 CD patients (24%) exhibited an increased level of γδ-T cells (5-15%). In the 18 patients also receiving thiopurines or methotrexate, the average baseline γδ-T cell level was 4.4%. In three male CD patients with a high baseline value, the γδ-T cell population increased dramatically following infliximab therapy. A fourth male patient also on infliximab monotherapy presented with 20% γδ-T cells, which increased to 25% shortly after treatment and was 36% between infusions. Clonality studies revealed an oligoclonal γδ-T cell pattern with dominant γδ-T cell clones. In support of our clinical findings, in vitro experiments showed a dose-dependent proliferative effect of anti-TNF-α agents on γδ-T cells. CONCLUSION/SIGNIFICANCE: CD patients treated with immunomodulators had constitutively high levels of γδ-T cells. Infliximab exacerbated clonal γδ-T cell expansion in vivo and induced γδ-T cell proliferation in vitro. Overall, young, male CD patients with high baseline γδ-T cell levels may be at an increased risk of developing malignant γδ-T cell lymphomas following treatment with anti-TNF-α agents

    Increased Secreted Amyloid Precursor Protein-α (sAPPα) in Severe Autism: Proposal of a Specific, Anabolic Pathway and Putative Biomarker

    Get PDF
    Autism is a neurodevelopmental disorder characterized by deficits in verbal communication, social interactions, and the presence of repetitive, stereotyped and compulsive behaviors. Excessive early brain growth is found commonly in some patients and may contribute to disease phenotype. Reports of increased levels of brain-derived neurotrophic factor (BDNF) and other neurotrophic-like factors in autistic neonates suggest that enhanced anabolic activity in CNS mediates this overgrowth effect. We have shown previously that in a subset of patients with severe autism and aggression, plasma levels of the secreted amyloid-β (Aβ) precursor protein-alpha form (sAPPα) were significantly elevated relative to controls and patients with mild-to-moderate autism. Here we further tested the hypothesis that levels of sAPPα and sAPPβ (proteolytic cleavage products of APP by α- and β-secretase, respectively) are deranged in autism and may contribute to an anabolic environment leading to brain overgrowth. We measured plasma levels of sAPPα, sAPPβ, Aβ peptides and BDNF by corresponding ELISA in a well characterized set of subjects. We included for analysis 18 control, 6 mild-to-moderate, and 15 severely autistic patient plasma samples. We have observed that sAPPα levels are increased and BDNF levels decreased in the plasma of patients with severe autism as compared to controls. Further, we show that Aβ1-40, Aβ1-42, and sAPPβ levels are significantly decreased in the plasma of patients with severe autism. These findings do not extend to patients with mild-to-moderate autism, providing a biochemical correlate of phenotypic severity. Taken together, this study provides evidence that sAPPα levels are generally elevated in severe autism and suggests that these patients may have aberrant non-amyloidogenic processing of APP

    Administration of Thimerosal to Infant Rats Increases Overflow of Glutamate and Aspartate in the Prefrontal Cortex: Protective Role of Dehydroepiandrosterone Sulfate

    Get PDF
    Thimerosal, a mercury-containing vaccine preservative, is a suspected factor in the etiology of neurodevelopmental disorders. We previously showed that its administration to infant rats causes behavioral, neurochemical and neuropathological abnormalities similar to those present in autism. Here we examined, using microdialysis, the effect of thimerosal on extracellular levels of neuroactive amino acids in the rat prefrontal cortex (PFC). Thimerosal administration (4 injections, i.m., 240 μg Hg/kg on postnatal days 7, 9, 11, 15) induced lasting changes in amino acid overflow: an increase of glutamate and aspartate accompanied by a decrease of glycine and alanine; measured 10–14 weeks after the injections. Four injections of thimerosal at a dose of 12.5 μg Hg/kg did not alter glutamate and aspartate concentrations at microdialysis time (but based on thimerosal pharmacokinetics, could have been effective soon after its injection). Application of thimerosal to the PFC in perfusion fluid evoked a rapid increase of glutamate overflow. Coadministration of the neurosteroid, dehydroepiandrosterone sulfate (DHEAS; 80 mg/kg; i.p.) prevented the thimerosal effect on glutamate and aspartate; the steroid alone had no influence on these amino acids. Coapplication of DHEAS with thimerosal in perfusion fluid also blocked the acute action of thimerosal on glutamate. In contrast, DHEAS alone reduced overflow of glycine and alanine, somewhat potentiating the thimerosal effect on these amino acids. Since excessive accumulation of extracellular glutamate is linked with excitotoxicity, our data imply that neonatal exposure to thimerosal-containing vaccines might induce excitotoxic brain injuries, leading to neurodevelopmental disorders. DHEAS may partially protect against mercurials-induced neurotoxicity

    Combination of probenecid-sulphadoxine-pyrimethamine for intermittent preventive treatment in pregnancy

    Get PDF
    The antifolate sulphadoxine-pyrimethamine (SP) has been used in the intermittent prevention of malaria in pregnancy (IPTp). SP is an ideal choice for IPTp, however, as resistance of Plasmodium falciparum to SP increases, data are accumulating that SP may no longer provide benefit in areas of high-level resistance. Probenecid was initially used as an adjunctive therapy to increase the blood concentration of penicillin; it has since been used to augment concentrations of other drugs, including antifolates. The addition of probenecid has been shown to increase the treatment efficacy of SP against malaria, suggesting that the combination of probenecid plus SP may prolong the useful lifespan of SP as an effective agent for IPTp. Here, the literature on the pharmacokinetics, adverse reactions, interactions and available data on the use of these drugs in pregnancy is reviewed, and the possible utility of an SP-probenecid combination is discussed. This article concludes by calling for further research into this potentially useful combination

    The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease.

    Get PDF
    The miR-17/92 cluster is among the best-studied microRNA clusters. Interest in the cluster and its members has been increasing steadily and the number of publications has grown exponentially since its discovery with more than 1000 articles published in 2012 alone. Originally found to be involved in tumorigenesis, research work in recent years has uncovered unexpected roles for its members in a wide variety of settings that include normal development, immune diseases, cardiovascular diseases, neurodegenerative diseases and aging. In light of its ever-increasing importance and ever-widening regulatory roles, we review here the latest body of knowledge on the cluster\u27s involvement in health and disease as well as provide a novel perspective on the full spectrum of protein-coding and non-coding transcripts that are likely regulated by its members

    Heme oxygenase-1 and carbon monoxide in pulmonary medicine

    Get PDF
    Heme oxygenase-1 (HO-1), an inducible stress protein, confers cytoprotection against oxidative stress in vitro and in vivo. In addition to its physiological role in heme degradation, HO-1 may influence a number of cellular processes, including growth, inflammation, and apoptosis. By virtue of anti-inflammatory effects, HO-1 limits tissue damage in response to proinflammatory stimuli and prevents allograft rejection after transplantation. The transcriptional upregulation of HO-1 responds to many agents, such as hypoxia, bacterial lipopolysaccharide, and reactive oxygen/nitrogen species. HO-1 and its constitutively expressed isozyme, heme oxygenase-2, catalyze the rate-limiting step in the conversion of heme to its metabolites, bilirubin IXα, ferrous iron, and carbon monoxide (CO). The mechanisms by which HO-1 provides protection most likely involve its enzymatic reaction products. Remarkably, administration of CO at low concentrations can substitute for HO-1 with respect to anti-inflammatory and anti-apoptotic effects, suggesting a role for CO as a key mediator of HO-1 function. Chronic, low-level, exogenous exposure to CO from cigarette smoking contributes to the importance of CO in pulmonary medicine. The implications of the HO-1/CO system in pulmonary diseases will be discussed in this review, with an emphasis on inflammatory states

    Carbon Dioxide Utilisation -The Formate Route

    Get PDF
    UIDB/50006/2020 CEEC-Individual 2017 Program Contract.The relentless rise of atmospheric CO2 is causing large and unpredictable impacts on the Earth climate, due to the CO2 significant greenhouse effect, besides being responsible for the ocean acidification, with consequent huge impacts in our daily lives and in all forms of life. To stop spiral of destruction, we must actively reduce the CO2 emissions and develop new and more efficient “CO2 sinks”. We should be focused on the opportunities provided by exploiting this novel and huge carbon feedstock to produce de novo fuels and added-value compounds. The conversion of CO2 into formate offers key advantages for carbon recycling, and formate dehydrogenase (FDH) enzymes are at the centre of intense research, due to the “green” advantages the bioconversion can offer, namely substrate and product selectivity and specificity, in reactions run at ambient temperature and pressure and neutral pH. In this chapter, we describe the remarkable recent progress towards efficient and selective FDH-catalysed CO2 reduction to formate. We focus on the enzymes, discussing their structure and mechanism of action. Selected promising studies and successful proof of concepts of FDH-dependent CO2 reduction to formate and beyond are discussed, to highlight the power of FDHs and the challenges this CO2 bioconversion still faces.publishersversionpublishe
    corecore