20 research outputs found

    Passive case detection of malaria in Ratanakiri Province (Cambodia) to detect villages at higher risk for malaria

    Get PDF
    Additional file 9. Spatial clusters of villages with significantly higher risk of falciparum malaria cases from 2010 to 2014 in Ratanakiri Province. Only significant clusters are showed. RR: Relative risk. LLR: Log likelihood ratio

    Households or hotspots? Defining intervention targets for malaria elimination in Ratanakiri Province, eastern Cambodia

    Get PDF
    Background. Malaria “hotspots” have been proposed as potential intervention units for targeted malaria elimination. Little is known about hotspot formation and stability in settings outside sub-Saharan Africa. Methods. Clustering of Plasmodium infections at the household and hotspot level was assessed over 2 years in 3 villages in eastern Cambodia. Social and spatial autocorrelation statistics were calculated to assess clustering of malaria risk, and logistic regression was used to assess the effect of living in a malaria hotspot compared to living in a malaria-positive household in the first year of the study on risk of malaria infection in the second year. Results. The crude prevalence of Plasmodium infection was 8.4% in 2016 and 3.6% in 2017. Living in a hotspot in 2016 did not predict Plasmodium risk at the individual or household level in 2017 overall, but living in a Plasmodium-positive household in 2016 strongly predicted living in a Plasmodium-positive household in 2017 (Risk Ratio, 5.00 [95% confidence interval, 2.09–11.96], P < .0001). There was no consistent evidence that malaria risk clustered in groups of socially connected individuals from different households. Conclusions. Malaria risk clustered more clearly in households than in hotspots over 2 years. Household-based strategies should be prioritized in malaria elimination programs in this region

    True versus Apparent Malaria Infection Prevalence: The Contribution of a Bayesian Approach

    Get PDF
    AIMS: To present a new approach for estimating the "true prevalence" of malaria and apply it to datasets from Peru, Vietnam, and Cambodia. METHODS: Bayesian models were developed for estimating both the malaria prevalence using different diagnostic tests (microscopy, PCR & ELISA), without the need of a gold standard, and the tests' characteristics. Several sources of information, i.e. data, expert opinions and other sources of knowledge can be integrated into the model. This approach resulting in an optimal and harmonized estimate of malaria infection prevalence, with no conflict between the different sources of information, was tested on data from Peru, Vietnam and Cambodia. RESULTS: Malaria sero-prevalence was relatively low in all sites, with ELISA showing the highest estimates. The sensitivity of microscopy and ELISA were statistically lower in Vietnam than in the other sites. Similarly, the specificities of microscopy, ELISA and PCR were significantly lower in Vietnam than in the other sites. In Vietnam and Peru, microscopy was closer to the "true" estimate than the other 2 tests while as expected ELISA, with its lower specificity, usually overestimated the prevalence. CONCLUSIONS: Bayesian methods are useful for analyzing prevalence results when no gold standard diagnostic test is available. Though some results are expected, e.g. PCR more sensitive than microscopy, a standardized and context-independent quantification of the diagnostic tests' characteristics (sensitivity and specificity) and the underlying malaria prevalence may be useful for comparing different sites. Indeed, the use of a single diagnostic technique could strongly bias the prevalence estimation. This limitation can be circumvented by using a Bayesian framework taking into account the imperfect characteristics of the currently available diagnostic tests. As discussed in the paper, this approach may further support global malaria burden estimation initiatives

    Open Access Outdoor malaria transmission in forested villages of Cambodia

    Get PDF
    Background: Despite progress in malaria control, malaria remains an important public health concern in Cambodia, mostly linked to forested areas. Large-scale vector control interventions in Cambodia are based on the free distribution of long-lasting insecticidal nets (LLINs), targeting indoor- and late-biting malaria vectors only. The present study evaluated the vector density, early biting activity and malaria transmission of outdoor-biting malaria vectors in two forested regions in Cambodia. Methods: In 2005 two entomological surveys were conducted in 12 villages and their related forest plots in the east and west of Cambodia. Mosquitoes were collected outdoors by human landing collections and subjected to enzyme-linked immunosorbent assay (ELISA) to detect Plasmodium sporozoites after morphological identification. Blood samples were collected in the same villages for serological analyses. Collected data were analysed by the classification and regression tree (CART) method and linear regression analysis. Results: A total of 11,826 anophelines were recorded landing in 787 man-night collections. The majority (82.9%) were the known primary and secondary vectors. Most of the variability in vector densities and early biting rates was explained by geographical factors, mainly at village level. Vector densities were similar between forest and village sites. Based on ELISA results, 29 % out of 17 Plasmodium-positive bites occurred before sleeping time, and 65 % in the forest plots. The entomological inoculation rates of survey 1 were important predictors of the respective seroconversion rates in survey 2, whereas the mosquito densities were not. Discussion: In Cambodia, outdoor malaria transmission in villages and forest plots is important. In this context, deforestation might result in lower densities of the primary vectors, but also in higher densities of secondary vectors invading deforested areas. Moreover, higher accessibility of the forest could result in a higher manvector contact. Therefore, additional vector control measures should be developed to target outdoor- and earlybiting vectors

    Field evaluation of picaridin repellents reveals differences in repellent sensitivity between Southeast Asian vectors of malaria and arboviruses

    No full text
    Scaling up of insecticide treated nets has contributed to a substantial malaria decline. However, some malaria vectors, and most arbovirus vectors, bite outdoors and in the early evening. Therefore, topically applied insect repellents may provide crucial additional protection against mosquito-borne pathogens. Among topical repellents, DEET is the most commonly used, followed by others such as picaridin. The protective efficacy of two formulated picaridin repellents against mosquito bites, including arbovirus and malaria vectors, was evaluated in a field study in Cambodia. Over a period of two years, human landing collections were performed on repellent treated persons, with rotation to account for the effect of collection place, time and individual collector. Based on a total of 4996 mosquitoes collected on negative control persons, the overall five hour protection rate was 97.4% [95%CI: 97.1-97.8%], not decreasing over time. Picaridin 20% performed equally well as DEET 20% and better than picaridin 10%. Repellents performed better against Mansonia and Culex spp. as compared to aedines and anophelines. A lower performance was observed against Aedes albopictus as compared to Aedes aegypti, and against Anopheles barbirostris as compared to several vector species. Parity rates were higher in vectors collected on repellent treated person as compared to control persons. As such, field evaluation shows that repellents can provide additional personal protection against early and outdoor biting malaria and arbovirus vectors, with excellent protection up to five hours after application. The heterogeneity in repellent sensitivity between mosquito genera and vector species could however impact the efficacy of repellents in public health programs. Considering its excellent performance and potential to protect against early and outdoor biting vectors, as well as its higher acceptability as compared to DEET, picaridin is an appropriate product to evaluate the epidemiological impact of large scale use of topical repellents on arthropod borne diseases

    Efficacy of topical mosquito repellent (picaridin) plus long-lasting insecticidal nets versus long-lasting insecticidal nets alone for control of malaria: a cluster randomised controlled trial

    No full text
    SummaryBackgroundAlthough effective topical repellents provide personal protection against malaria, whether mass use of topical repellents in addition to long-lasting insecticidal nets can contribute to a further decline of malaria is not known, particularly in areas where outdoor transmission occurs. We aimed to assess the epidemiological efficacy of a highly effective topical repellent in addition to long-lasting insecticidal nets in reducing malaria prevalence in this setting.MethodsA cluster randomised controlled trial was done in the 117 most endemic villages in Ratanakiri province, Cambodia, to assess the efficacy of topical repellents in addition to long-lasting insecticidal nets in controlling malaria in a low-endemic setting. We did a pre-trial assessment of village accessibility and excluded four villages because of their inaccessibility during the rainy season. Another 25 villages were grouped because of their proximity to each other, resulting in 98 study clusters (comprising either a single village or multiple neighbouring villages). Clusters were randomly assigned (1:1) to either a control (long-lasting insecticidal nets) or intervention (long-lasting insecticidal nets plus topical repellent) study group after a restricted randomisation. All clusters received one long-lasting insecticidal net per individual, whereas those in the intervention group also received safe and effective topical repellents (picaridin KBR3023, SC Johnson, Racine, WI, USA), along with instruction and promotion of its daily use. Cross-sectional surveys of 65 randomly selected individuals per cluster were done at the beginning and end of the malaria transmission season in 2012 and 2013. The primary outcome was Plasmodium species-specific prevalence in participants obtained by real-time PCR, assessed in the intention-to-treat population. Complete safety analysis data will be published seperately; any ad-hoc adverse events are reported here. This trial is registered with ClinicalTrials.gov, number NCT01663831.FindingsOf the 98 clusters that villages were split into, 49 were assigned to the control group and 49 were assigned to the intervention group. Despite having a successful distribution system, the daily use of repellents was suboptimum. No post-intervention differences in PCR plasmodium prevalence were observed between study groups in 2012 (4·91% in the control group vs 4·86% in the intervention group; adjusted odds ratio [aOR] 1·01 [95% CI 0·60–1·70]; p=0·975) or in 2013 (2·96% in the control group vs 3·85% in the intervention group; aOR 1·31 [0·81–2·11]; p=0·266). Similar results were obtained according to Plasmodium species (1·33% of participants in the intervention group vs 1·10% in the intervention group were infected with Plasmodium falciparum; aOR 0·83 [0·44–1·56]; p=0·561; and 1·85% in the control group vs 2·67% in the intervention group were infected with Plasmodium vivax; aOR 1·51 [0·88–2·57]; p=0·133). 41 adverse event notifications from nine villages were received, of which 33 were classified as adverse reactions (11 of these 33 were cases of repellent abuse through oral ingestion, either accidental or not). All participants with adverse reactions fully recovered and 17 were advised to permanently stop using the repellent.InterpretationMass distribution of highly effective topical repellents in resource-sufficient conditions did not contribute to a further decline in malaria endemicity in a pre-elimination setting in the Greater Mekong subregion. Daily compliance and appropriate use of the repellents remains the main obstacle.FundingBill & Melinda Gates Foundation
    corecore