9 research outputs found

    Entomological outcomes of cluster-randomised, community-driven dengue vector-suppression interventions in Kampong Cham province, Cambodia

    Get PDF
    Cambodia has one of the highest dengue infection rates in Southeast Asia. Here we report quantitative entomological results of a large-scale cluster-randomised trial assessing the impact on vector populations of a package of vector control interventions including larvivorous guppy fish in household water containers, mosquito trapping with gravid-ovitraps, solid waste management, breeding-container coverage through community education and engagement for behavioural change, particularly through the participation of school children. These activities resulted in major reductions in Container Index, House Index, Breteau Index, Pupal Index and Adult Index (all p-values 0.002 or lower) in the Intervention Arm compared with the Control Arm in a series of household surveys conducted over a follow-up period of more than one year, although the project was not able to measure the longer-term sustainability of the interventions. Despite comparative reductions in Adult Index between the study arms, the Adult Index was higher in the Intervention Arm in the final household survey than in the first household survey. This package of biophysical and community engagement interventions was highly effective in reducing entomological indices for dengue compared with the control group, but caution is required in extrapolating the reduction in household Adult Index to a reduction in the overall population of adult Aedes mosquitoes, and in interpreting the relationship between a reduction in entomological indices and a reduction in the number of dengue cases. The package of interventions should be trialled in other locations

    Forest Goers and Multidrug-Resistant Malaria in Cambodia: An Ethnographic Study.

    Get PDF
    Multidrug-resistant Plasmodium falciparum malaria on the Cambodia-Thailand border is associated with working in forested areas. Beyond broad recognition of "forest-going" as a risk factor for malaria, little is known about different forest-going populations in this region. In Oddar Meanchey Province in northwestern Cambodia, qualitative ethnographic research was conducted to gain an in-depth understanding of how different populations, mobility and livelihood patterns, and activities within the forest intersect with potentiate malaria risk and impact on the effectiveness of malaria control and elimination strategies. We found that most forest-going in this area is associated with obtaining precious woods, particularly Siamese rosewood. In the past, at-risk populations included large groups of temporary migrants. As timber supplies have declined, so have these large migrant groups. However, groups of local residents continue to go to the forest and are staying for longer. Most forest-goers had experienced multiple episodes of malaria and were well informed about malaria risk. However, economic realities mean that local residents continue to pursue forest-based livelihoods. Severe constraints of available vector control methods mean that forest-goers have limited capacity to prevent vector exposure. As forest-goers access the forest using many different entry and exit points, border screening and treatment interventions will not be feasible. Once in the forest, groups often converge in the same areas; therefore, interventions targeting the mosquito population may have a potential role. Ultimately, a multisectoral approach as well as innovative and flexible malaria control strategies will be required if malaria elimination efforts are to be successful

    Entomological outcomes of clusterrandomised, community-driven dengue vector-suppression interventions in Kampong Cham province, Cambodia

    Get PDF
    Cambodia has one of the highest dengue infection rates in Southeast Asia. Here we report quantitative entomological results of a large-scale cluster-randomised trial assessing the impact on vector populations of a package of vector control interventions including larvivorous guppy fish in household water containers, mosquito trapping with gravid-ovitraps, solid waste management, breeding-container coverage through community education and engagement for behavioural change, particularly through the participation of school children. These activities resulted in major reductions in Container Index, House Index, Breteau Index, Pupal Index and Adult Index (all p-values 0.002 or lower) in the Intervention Arm compared with the Control Arm in a series of household surveys conducted over a follow-up period of more than one year, although the project was not able to measure the longer-term sustainability of the interventions. Despite comparative reductions in Adult Index between the study arms, the Adult Index was higher in the Intervention Arm in the final household survey than in the first household survey. This package of biophysical and community engagement interventions was highly effective in reducing entomological indices for dengue compared with the control group, but caution is required in extrapolating the reduction in household Adult Index to a reduction in the overall population of adult Aedes mosquitoes, and in interpreting the relationship between a reduction in entomological indices and a reduction in the number of dengue cases. The package of interventions should be trialled in other locations.The WHO Special Programme for Research and Training in Tropical Diseases (TDR).https://journals.plos.org/plosntdsdm2022UP Centre for Sustainable Malaria Control (UP CSMC

    Re-imagining malaria: heterogeneity of human and mosquito behaviour in relation to residual malaria transmission in Cambodia

    Get PDF
    BackgroundIn certain regions in Southeast Asia, where malaria is reduced to forested regions populated by ethnic minorities dependent on slash-and-burn agriculture, malaria vector populations have developed a propensity to feed early and outdoors, limiting the effectiveness of long-lasting insecticide-treated nets (LLIN) and indoor residual spraying (IRS). The interplay between heterogeneous human, as well as mosquito behaviour, radically challenges malaria control in such residual transmission contexts. This study examines human behavioural patterns in relation to the vector behaviour.MethodsThe anthropological research used a sequential mixed-methods study design in which quantitative survey research methods were used to complement findings from qualitative ethnographic research. The qualitative research existed of in-depth interviews and participant observation. For the entomological research, indoor and outdoor human landing collections were performed. All research was conducted in selected villages in Ratanakiri province, Cambodia.ResultsVariability in human behaviour resulted in variable exposure to outdoor and early biting vectors: (i) indigenous people were found to commute between farms in the forest, where malaria exposure is higher, and village homes; (ii) the indoor/outdoor biting distinction was less clear in forest housing often completely or partly open to the outside; (iii) reported sleeping times varied according to the context of economic activities, impacting on the proportion of infections that could be accounted for by early or nighttime biting; (iv) protection by LLINs may not be as high as self-reported survey data indicate, as observations showed around 40% (non-treated) market net use while (v) unprotected evening resting and deep forest activities impacted further on the suboptimal use of LLINs.ConclusionsThe heterogeneity of human behaviour and the variation of vector densities and biting behaviours may lead to a considerable proportion of exposure occurring during times that people are assumed to be protected by the distributed LLINs. Additional efforts in improving LLIN use during times when people are resting in the evening and during the night might still have an impact on further reducing malaria transmission in Cambodia

    The PAGODAS protocol: pediatric assessment group of dengue and Aedes saliva protocol to investigate vector-borne determinants of Aedes-transmitted arboviral infections in Cambodia

    No full text
    Background: Mosquito-borne arboviruses, like dengue virus, continue to cause significant global morbidity and mortality, particularly in Southeast Asia. When the infectious mosquitoes probe into human skin for a blood meal, they deposit saliva containing a myriad of pharmacologically active compounds, some of which alter the immune response and influence host receptivity to infection, and consequently, the establishment of the virus. Previous reports have highlighted the complexity of mosquito vector-derived factors and immunity in the success of infection. Cumulative evidence from animal models and limited data from humans have identified various vector-derived components, including salivary components, that are co-delivered with the pathogen and play an important role in the dissemination of infection. Much about the roles and effects of these vector-derived factors remain to be discovered. Methods/Design: We describe a longitudinal, pagoda (community)-based pediatric cohort study to evaluate the burden of dengue virus infection and document the immune responses to salivary proteins of Aedes aegypti, the mosquito vector of dengue, Zika, and chikungunya viruses. The study includes community-based seroprevalence assessments in the peri-urban town of Chbar Mon in Kampong Speu Province, Cambodia. The study aims to recruit 771 children between the ages of 2 and 9 years for a three year period of longitudinal follow-up, including twice per year (rainy and dry season) serosurveillance for dengue seroconversion and Ae. aegypti salivary gland homogenate antibody intensity determinations by ELISA assays. Diagnostic tests for acute dengue, Zika and chikungunya viral infections will be performed by RT-PCR. Discussion: This study will serve as a foundation for further understanding of mosquito saliva immunity and its impact on Aedes-transmitted arboviral diseases endemic to Cambodia.</br

    The PAGODAS protocol: pediatric assessment group of dengue and Aedes saliva protocol to investigate vector-borne determinants of Aedes-transmitted arboviral infections in Cambodia

    No full text
    Abstract Background Mosquito-borne arboviruses, like dengue virus, continue to cause significant global morbidity and mortality, particularly in Southeast Asia. When the infectious mosquitoes probe into human skin for a blood meal, they deposit saliva containing a myriad of pharmacologically active compounds, some of which alter the immune response and influence host receptivity to infection, and consequently, the establishment of the virus. Previous reports have highlighted the complexity of mosquito vector-derived factors and immunity in the success of infection. Cumulative evidence from animal models and limited data from humans have identified various vector-derived components, including salivary components, that are co-delivered with the pathogen and play an important role in the dissemination of infection. Much about the roles and effects of these vector-derived factors remain to be discovered. Methods/Design We describe a longitudinal, pagoda (community)-based pediatric cohort study to evaluate the burden of dengue virus infection and document the immune responses to salivary proteins of Aedes aegypti, the mosquito vector of dengue, Zika, and chikungunya viruses. The study includes community-based seroprevalence assessments in the peri-urban town of Chbar Mon in Kampong Speu Province, Cambodia. The study aims to recruit 771 children between the ages of 2 and 9 years for a three year period of longitudinal follow-up, including twice per year (rainy and dry season) serosurveillance for dengue seroconversion and Ae. aegypti salivary gland homogenate antibody intensity determinations by ELISA assays. Diagnostic tests for acute dengue, Zika and chikungunya viral infections will be performed by RT-PCR. Discussion This study will serve as a foundation for further understanding of mosquito saliva immunity and its impact on Aedes-transmitted arboviral diseases endemic to Cambodia. Trial registration NCT03534245 registered on 23 May 2018
    corecore