1,123 research outputs found

    Exciton spectroscopy of hexagonal boron nitride using non-resonant x-ray Raman scattering

    Full text link
    We report non-resonant x-ray Raman scattering (XRS) measurements from hexagonal boron nitride for transferred momentum from 2 to 9 A˚1\mathrm{\AA}^{-1} along directions both in and out of the basal plane. A symmetry-based argument, together with real-space full multiple scattering calculations of the projected density of states in the spherical harmonics basis, reveals that a strong pre-edge feature is a dominantly Y10Y_{10}-type Frenkel exciton with no other \textit{s}-, \textit{p}-, or \textit{d}- components. This conclusion is supported by a second, independent calculation of the \textbf{q}-dependent XRS cross-section based on the Bethe-Salpeter equation

    Anisotropic excitonic effects in the energy loss function of hexagonal boron nitride

    Get PDF
    We demonstrate that the valence energy-loss function of hexagonal boron nitride (hBN) displays a strong anisotropy in shape, excitation energy and dispersion for momentum transfer q parallel or perpendicular to the hBN layers. This is manifested by e.g. an energy shift of 0.7 eV that cannot be captured by single-particle approaches and is a demonstration of a strong anisotropy in the two-body electron-hole interaction. Furthermore, for in-plane directions of q we observe a splitting of the -plasmon in the M direction that is absent in the K direction and this can be traced back to band-structure effects.Comment: 10 pages, 4 figure

    Inelastic Scattering from Core-electrons: a Multiple Scattering Approach

    Full text link
    The real-space multiple-scattering (RSMS) approach is applied to model non-resonant inelastic scattering from deep core electron levels over a broad energy spectrum. This approach is applicable to aperiodic or periodic systems alike and incorporates ab initio, self-consistent electronic structure and final state effects. The approach generalizes to finite momentum transfer a method used extensively to model x-ray absorption spectra (XAS), and includes both near edge spectra and extended fine structure. The calculations can be used to analyze experimental results of inelastic scattering from core-electrons using either x-ray photons (NRIXS) or electrons (EELS). In the low momentum transfer region (the dipole limit), these inelastic loss spectra are proportional to those from XAS. Thus their analysis can provide similar information about the electronic and structural properties of a system. Results for finite momentum transfer yield additional information concerning monopole, quadrupole, and higher couplings. Our results are compared both with experiment and with other theoretical calculations.Comment: 11 pages, 8 figures. Submitted to Phys. Rev.

    GINZBURG-LANDAU THEORY OF VORTICES IN dd-WAVE SUPERCONDUCTORS

    Full text link
    Ginzburg-Landau theory is used to study the properties of single vortices and of the Abrikosov vortex lattice in a dx2y2d_{x^2-y^2} superconductor. For a single vortex, the ss-wave order parameter has the expected four-lobe structure in a ring around the core and falls off like 1/r21/r^2 at large distances. The topological structure of the ss-wave order parameter consists of one counter-rotating unit vortex, centered at the core, surrounded by four symmetrically placed positive unit vortices. The Abrikosov lattice is shown to have a triangular structure close to TcT_c and an oblique structure at lower temperatures. Comparison is made to recent neutron scattering data.Comment: 4 pages, REVTeX, 3 figures available upon reques

    Antibody responses to nasopharyngeal carriage of Streptococcus pneumoniae in adults: A longitudinal household study

    Get PDF
    Background. Natural immunity to Streptococcus pneumoniae is thought to be induced by exposure to S. pneumoniae or cross-reactive antigens. No longitudinal studies of carriage of and immune responses to S. pneumoniae have been conducted using sophisticated immunological laboratory techniques.Methods. We enrolled 121 families with young children into this study. Nasopharyngeal (NP) swabs were collected monthly for 10 months from all family members and were cultured in a standard fashion. Cultured S. pneumoniae isolates were serotyped. At the beginning (month 0) and end (month 10) of the study, venous blood was collected from family members 118 years old. Serotype-specific antipolysaccharide immunoglobulin G (IgG) and functional antibody and antibodies to pneumolysin, pneumococcal surface protein A (PspA), and pneumococcal surface antigen A (PsaA) were measured in paired serum samples.Results. Levels of anticapsular IgG increased significantly after carriage of serotypes 9V, 14, 18C, 19F, and 23F by an individual or family member. For serotype 14, a higher level of anticapsular IgG at the beginning of the study was associated with reduced odds of carriage (P = .0006). There was a small (similar to 20%) but significant increase in titers of antibodies to PsaA and pneumolysin but no change in titers of antibody to PspA.Conclusions. Adults respond to NP carriage by mounting anticapsular and weak antiprotein antibody responses, and naturally induced anticapsular IgG can prevent carriage

    Biochem Soc Trans

    Get PDF
    Abnormal protein aggregation and intracellular or extracellular accumulation of misfolded and aggregated proteins are key events in the pathogenesis of different neurodegenerative diseases. Furthermore, endoplasmic reticulum stress and impairment of the ubiquitin-proteasome system probably contribute to neurodegeneration in these diseases. A characteristic feature of AD (Alzheimer's disease) is the abnormal accumulation of Abeta (amyloid beta-peptide) in the brain. Evidence shows that the AD-associated PS (presenilin) also forms aggregates under certain conditions and that another AD-associated protein, ubiquilin-1, controls protein aggregation and deposition of aggregated proteins. Here, we review the current knowledge of ubiquilin-1 and PS in protein aggregation and related events that potentially influence neurodegeneration

    The Effects of Phase Separation in the Cuprate Superconductors

    Full text link
    Phase separation has been observed by several different experiments and it is believed to be closely related with the physics of cuprates but its exactly role is not yet well known. We propose that the onset of pseudogap phenomenon or the upper pseudogap temperature TT^* has its origin in a spontaneous phase separation transition at the temperature Tps=TT_{ps}=T^*. In order to perform quantitative calculations, we use a Cahn-Hilliard (CH) differential equation originally proposed to the studies of alloys and on a spinodal decomposition mechanism. Solving numerically the CH equation it is possible to follow the time evolution of a coarse-grained order parameter which satisfies a Ginzburg-Landau free-energy functional commonly used to model superconductors. In this approach, we follow the process of charge segregation into two main equilibrium hole density branches and the energy gap normally attributed to the upper pseudogap arises as the free-energy potential barrier between these two equilibrium densities below TpsT_{ps}. This simulation provides quantitative results %on the hole doping and temperature %dependence of the degree of the charge inhomogeneity in agreement with %some experiments and the simulations reproduce the observed stripe and granular pattern of segregation. Furthermore, with a Bogoliubov-deGennes (BdG) local superconducting critical temperature calculation for the lower pseudogap or the onset of local superconductivity, it yields novel interpretation of several non-conventional measurements on cuprates.Comment: Published versio
    corecore