859 research outputs found

    Do Small RNAs Interfere With LINE-1?

    Get PDF
    Long interspersed elements (LINE-1 or L1) are the most active transposable elements in the human genome. Due to their high copy number and ability to sponsor retrotransposition of nonautonomous RNA sequences, unchecked L1 activity can negatively impact the genome by a number of means. Substantial evidence in lower eukaryotes demonstrates that the RNA interference (RNAi) machinery plays a major role in containing transposon activity. Despite extensive analysis in other eukaryotes, no experimental evidence has been presented that L1-derived siRNAs exist, or that the RNAi plays a significant role in restricting L1 activity in the human genome. This review will present evidence showing a direct role for RNAi in suppressing the movement of transposable elements in other eukaryotes, as well as speculate on the role RNAi might play in protecting the human genome from LINE-1 activity

    Infrared astronomy research and high altitude observations

    Get PDF
    Highlights are presented of studies of the emission mechanisms in the 4 to 8 micron region of the spectrum using a circular variable filter wheel spectrometer with a PbSnTe photovoltaic detector. Investigations covered include the spectroscopy of planets, stellar atmospheres, highly obscured objects in molecular clouds, planetary nebulae, H2 regions, and extragalactic objects

    The Nature of the Compact/Symmetric Near-IR Continuum Source in 4C 40.36

    Get PDF
    Using NICMOS on HST, we have imaged the emission-line nebulae and the line-free continuum in 4C 40.36, a ultra-steep spectrum FR II radio galaxy at z=2.269. The line-free continuum was found to be extremely compact and symmetric while the emission-line nebulae seen in H-alpha+[N II] show very clumpy structures spreading almost linearly over 16 kpc. However, this linear structure is clearly misaligned from the radio axis. The SED of the line-free continuum is very flat, suggesting that if the continuum emission is produced by a single source, it is likely to be a young bursting stellar population or scattered AGN light. However, because of the lack of a line-free optical image with a comparable spatial resolution, we cannot exclude the possibility that the observed SED is a composite of a young blue population and an old red population.Comment: 4 pages, 2 figures; to appear in the proceedings of "The Hy-Redshift Universe: Galaxy Formation and Evolution at High Redshift", eds. A.J.Bunker and W. J. M. van Breuge

    Mode-selective coupling of coherent phonons to the Bi2212 electronic band structure

    Full text link
    Cuprate superconductors host a multitude of low-energy optical phonons. Using time- and angle-resolved photoemission spectroscopy, we study coherent phonons in Bi2_{2}Sr2_{2}Ca0.92_{0.92}Y0.08_{0.08}Cu2_{2}O8+Ī“_{8+\delta}. Sub-meV modulations of the electronic band structure are observed at frequencies of 3.94Ā±0.013.94\pm 0.01 and 5.59Ā±0.065.59\pm 0.06 THz. For the dominant mode at 3.94 THz, the amplitude of the band energy oscillation weakly increases as a function of momentum away from the node. Theoretical calculations allow identifying the observed modes as CuO2_{2}-derived A1gA_{1g} phonons. The Bi- and Sr-derived A1gA_{1g} modes which dominate Raman spectra in the relevant frequency range are absent in our measurements. This highlights the mode-selectivity for phonons coupled to the near-Fermi-level electrons, which originate from CuO2_{2} planes and dictate thermodynamic properties.Comment: 7 pages, 3 figure

    Near-Infrared Observations of Powerful High-Redshift Radio Galaxies: 4C 40.36 and 4C 39.37

    Get PDF
    We present near-infrared imaging and spectroscopic observations of two FR II high-redshift radio galaxies (HzRGs), 4C 40.36 (z=2.3) and 4C 39.37 (z=3.2), obtained with the Hubble, Keck, and Hale Telescopes. High resolution images were taken with filters both in and out of strong emission lines, and together with the spectroscopic data, the properties of the line and continuum emissions were carefully analyzed. Our analysis of 4C 40.36 and 4C 39.37 shows that strong emission lines (e.g., [O III] 5007 A and H alpha+[N II]) contribute to the broad-band fluxes much more significantly than previously estimated (80% vs. 20-40%), and that when the continuum sources are imaged through line-free filters, they show an extremely compact morphology with a high surface brightness. If we use the R^1/4-law parametrization, their effective radii (r(e)) are only 2-3 kpc while their restframe B-band surface brightnesses at r(e) are I(B) ~ 18 mag/arcsec^2. Compared with z ~ 1 3CR radio galaxies, the former is x3-5 smaller, while the latter is 1-1.5 mag brighter than what is predicted from the I(B)-r(e) correlation. Although exponential profiles produce equally good fits for 4C 40.36 and 4C 39.37, this clearly indicates that with respect to the z~1 3CR radio galaxies, the light distribution of these two HzRGs is much more centrally concentrated. Spectroscopically, 4C 40.36 shows a flat (fnu=const) continuum while 4C 39.37 shows a spectrum as red as that of a local giant elliptical galaxy. Although this difference may be explained in terms of a varying degree of star formation, the similarities of their surface brightness profiles and the submillimeter detection of 4C 39.37 might suggest that the intrinsic spectra is equally blue (young stars or an AGN), and that the difference is the amount of reddening.Comment: 30 pages, 6 tables, 10 figures; Accepted for publication in Astronomical Journa

    The luminosity function of the brightest galaxies in the IRAS survey

    Get PDF
    Results from a study of the far infrared properties of the brightest galaxies in the IRAS survey are described. There is a correlation between the infrared luminosity and the infrared to optical luminosity ratio and between the infrared luminosity and the far infrared color temperature in these galaxies. The infrared bright galaxies represent a significant component of extragalactic objects in the local universe, being comparable in space density to the Seyferts, optically identified starburst galaxies, and more numerous than quasars at the same bolometric luminosity. The far infrared luminosity in the local universe is approximately 25% of the starlight output in the same volume

    The Spectral Energy Distribution and Infrared Luminosities of z ā‰ˆ 2 Dust-obscured Galaxies from Herschel and Spitzer

    Get PDF
    Dust-obscured galaxies (DOGs) are a subset of high-redshift (z ā‰ˆ 2) optically-faint ultra-luminous infrared galaxies (ULIRGs, e.g., L_(IR) > 10^(12) L_ā˜‰). We present new far-infrared photometry, at 250, 350, and 500 Ī¼m (observed-frame), from the Herschel Space Telescope for a large sample of 113 DOGs with spectroscopically measured redshifts. Approximately 60% of the sample are detected in the far-IR. The Herschel photometry allows the first robust determinations of the total infrared luminosities of a large sample of DOGs, confirming their high IR luminosities, which range from 10^(11.6) L_ā˜‰ 10^(13) L_ā˜‰. The rest-frame near-IR (1-3 Ī¼m) spectral energy distributions (SEDs) of the Herschel-detected DOGs are predictors of their SEDs at longer wavelengths. DOGs with "power-law" SEDs in the rest-frame near-IR show observed-frame 250/24 Ī¼m flux density ratios similar to the QSO-like local ULIRG, Mrk 231. DOGs with a stellar "bump" in their rest-frame near-IR show observed-frame 250/24 Ī¼m flux density ratios similar to local star-bursting ULIRGs like NGC 6240. None show 250/24 Ī¼m flux density ratios similar to extreme local ULIRG, Arp 220; though three show 350/24 Ī¼m flux density ratios similar to Arp 220. For the Herschel-detected DOGs, accurate estimates (within ~25%) of total IR luminosity can be predicted from their rest-frame mid-IR data alone (e.g., from Spitzer observed-frame 24 Ī¼m luminosities). Herschel-detected DOGs tend to have a high ratio of infrared luminosity to rest-frame 8 Ī¼m luminosity (the IR8 = L_(IR)(8-1000 Ī¼m)/Ī½L_Ī½(8 Ī¼m) parameter of Elbaz et al.). Instead of lying on the z = 1-2 "infrared main sequence" of star-forming galaxies (like typical LIRGs and ULIRGs at those epochs) the DOGs, especially large fractions of the bump sources, tend to lie in the starburst sequence. While, Herschel-detected DOGs are similar to scaled up versions of local ULIRGs in terms of 250/24 Ī¼m flux density ratio, and IR8, they tend to have cooler far-IR dust temperatures (20-40 K for DOGs versus 40-50 K for local ULIRGs) as measured by the rest-frame 80/115 Ī¼m flux density ratios (e.g., observed-frame 250/350 Ī¼m ratios at z = 2). DOGs that are not detected by Herschel appear to have lower observed-frame 250/24 Ī¼m ratios than the detected sample, either because of warmer dust temperatures, lower IR luminosities, or both

    When a DNA Triple helix melts: An analog of the Efimov state

    Get PDF
    The base sequences of DNA contain the genetic code and to decode it a double helical DNA has to open its base pairs. Recent studies have shown that one can use a third strand to identify the base sequences without opening the double helix but by forming a triple helix. It is predicted here that such a three chain system exhibits the unusual behaviour of the existence of a three chain bound state in the absence of any two being bound. This phenomenon is analogous to the Efimov state in three particle quantum mechanics. A scaling theory is used to justify the Efimov connection. Real space renormalization group (RG), and exact numerical calculations are used to validate the prediction of a biological Efimov effect.Comment: Replaced by the (almost) published version, except the word "curiouser

    High-Redshift Dust Obscured Galaxies: A Morphology-Spectral Energy Distribution Connection Revealed by Keck Adaptive Optics

    Get PDF
    A simple optical to mid-IR color selection, R ā€“ [24]>14, i.e., f_Ī½(24 Ī¼m)/f_Ī½(R) ā‰³ 1000, identifies highly dust obscured galaxies (DOGs) with typical redshifts of z ~ 2 Ā± 0.5. Extreme mid-IR luminosities (L_(IR) > 10^(12-14)) suggest that DOGs are powered by a combination of active galactic nuclei (AGNs) and star formation, possibly driven by mergers. In an effort to compare their photometric properties with their rest-frame optical morphologies, we obtained high-spatial resolution (0."05-0."1) Keck Adaptive Optics K'-band images of 15 DOGs. The images reveal a wide range of morphologies, including small exponential disks (eight of 15), small ellipticals (four of 15), and unresolved sources (two of 15). One particularly diffuse source could not be classified because of low signal-to-noise ratio. We find a statistically significant correlation between galaxy concentration and mid-IR luminosity, with the most luminous DOGs exhibiting higher concentration and smaller physical size. DOGs with high concentration also tend to have spectral energy distributions (SEDs) suggestive of AGN activity. Thus, central AGN light may be biasing the morphologies of the more luminous DOGs to higher concentration. Conversely, more diffuse DOGs tend to show an SED shape suggestive of star formation. Two of 15 in the sample show multiple resolved components with separations of ~1 kpc, circumstantial evidence for ongoing mergers
    • ā€¦
    corecore