51 research outputs found

    An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites

    Get PDF
    Differential cytosine methylation of genes and transposons is important for maintaining integrity of plant genomes. In Arabidopsis, transposons are heavily methylated at both CG and non-CG sites, whereas the non-CG methylation is rarely found in active genes. Our previous genetic analysis suggested that a jmjC domain-containing protein IBM1 (increase in BONSAI methylation 1) prevents ectopic deposition of non-CG methylation, and this process is necessary for normal Arabidopsis development. Here, we directly determined the genomic targets of IBM1 through high-resolution genome-wide analysis of DNA methylation. The ibm1 mutation induced extensive hyper-methylation in thousands of genes. Transposons were unaffected. Notably, long transcribed genes were most severely affected. Methylation of genes is limited to CG sites in wild type, but CHG sites were also methylated in the ibm1 mutant. The ibm1-induced hyper-methylation did not depend on previously characterized components of the RNAi-based DNA methylation machinery. Our results suggest novel transcription-coupled mechanisms to direct genic methylation not only at CG but also at CHG sites. IBM1 prevents the CHG methylation in genes, but not in transposons

    Efficacy and safety of luseogliflozin added to various oral antidiabetic drugs in Japanese patients with type 2 diabetes mellitus

    Get PDF
    Introduction: Two studies were carried out to investigate the efficacy and safety of luseogliflozin added to existing oral antidiabetic drugs (OADs) in Japanese type 2 diabetic patients inadequately controlled with OAD monotherapy. Materials and Methods: In the trial involving add‐on to sulfonylureas (study 03‐1), patients were randomly assigned to receive luseogliflozin 2.5 mg or a placebo for a 24‐week double‐blind period, followed by a 28‐week open‐label period. In the open‐label trial involving add‐on to other OADs; that is, biguanides, dipeptidyl peptidase‐4 inhibitors, thiazolidinediones, glinides and α‐glucosidase inhibitors (study 03‐2), patients received luseogliflozin for 52 weeks. Results: In study 03‐1, luseogliflozin significantly decreased glycated hemoglobin at the end of the 24‐week double‐blind period compared with the placebo (–0.88%, P < 0.001), and glycated hemoglobin reduction from baseline at week 52 was –0.63%. In study 03‐2, luseogliflozin added to other OADs significantly decreased glycated hemoglobin from baseline at week 52 (–0.52 to –0.68%, P < 0.001 for all OADs). Bodyweight reduction was observed in all add‐on therapies, even with agents associated with weight gain, such as sulfonylureas and thiazolidinediones. Most adverse events were mild in severity. When added to a sulfonylurea, incidences of hypoglycemia during the double‐blind period were 8.7% and 4.2% for luseogliflozin and placebo, respectively, but no major hypoglycemic episodes occurred. The frequency and incidences of adverse events of special interest for sodium glucose cotransporter 2 inhibitors and adverse events associated with combined OADs were acceptable. Conclusions: Add‐on therapies of luseogliflozin to existing OADs improved glycemic control, reduced bodyweight and were well tolerated in Japanese type 2 diabetic patients. These trials were registered with the Japan Pharmaceutical Information Center (add on to sulfonylurea: JapicCTI‐111507; add on to other OADs: JapicCTI‐111508)

    Primed histone demethylation regulates shoot regenerative competency

    Get PDF
    Acquisition of pluripotency by somatic cells is a striking process that enables multicellular organisms to regenerate organs. This process includes silencing of genes to erase original tissue memory and priming of additional cell type specification genes, which are then poised for activation by external signal inputs. Here, through analysis of genome-wide histone modifications and gene expression profiles, we show that a gene priming mechanism involving LYSINE-SPECIFIC DEMETHYLASE 1-LIKE 3 (LDL3) specifically eliminates H3K4me2 during formation of the intermediate pluripotent cell mass known as callus derived from Arabidopsis root cells. While LDL3-mediated H3K4me2 removal does not immediately affect gene expression, it does facilitate the later activation of genes that act to form shoot progenitors when external cues lead to shoot induction. These results give insights into the role of H3K4 methylation in plants, and into the primed state that provides plant cells with high regenerative competency

    Primed histone demethylation regulates shoot regenerative competency

    Get PDF
    Acquisition of pluripotency by somatic cells is a striking process that enables multicellular organisms to regenerate organs. This process includes silencing of genes to erase original tissue memory and priming of additional cell type specification genes, which are then poised for activation by external signal inputs. Here, through analysis of genome-wide histone modifications and gene expression profiles, we show that a gene priming mechanism involving LYSINE-SPECIFIC DEMETHYLASE 1-LIKE 3 (LDL3) specifically eliminates H3K4me2 during formation of the intermediate pluripotent cell mass known as callus derived from Arabidopsis root cells. While LDL3-mediated H3K4me2 removal does not immediately affect gene expression, it does facilitate the later activation of genes that act to form shoot progenitors when external cues lead to shoot induction. These results give insights into the role of H3K4 methylation in plants, and into the primed state that provides plant cells with high regenerative competency

    A Link among DNA Replication, Recombination, and Gene Expression Revealed by Genetic and Genomic Analysis of TEBICHI Gene of Arabidopsis thaliana

    Get PDF
    Spatio-temporal regulation of gene expression during development depends on many factors. Mutations in Arabidopsis thaliana TEBICHI (TEB) gene encoding putative helicase and DNA polymerase domains-containing protein result in defects in meristem maintenance and correct organ formation, as well as constitutive DNA damage response and a defect in cell cycle progression; but the molecular link between these phenotypes of teb mutants is unknown. Here, we show that mutations in the DNA replication checkpoint pathway gene, ATR, but not in ATM gene, enhance developmental phenotypes of teb mutants, although atr suppresses cell cycle defect of teb mutants. Developmental phenotypes of teb mutants are also enhanced by mutations in RAD51D and XRCC2 gene, which are involved in homologous recombination. teb and teb atr double mutants exhibit defects in adaxial-abaxial polarity of leaves, which is caused in part by the upregulation of ETTIN (ETT)/AUXIN RESPONSIVE FACTOR 3 (ARF3) and ARF4 genes. The Helitron transposon in the upstream of ETT/ARF3 gene is likely to be involved in the upregulation of ETT/ARF3 in teb. Microarray analysis indicated that teb and teb atr causes preferential upregulation of genes nearby the Helitron transposons. Furthermore, interestingly, duplicated genes, especially tandemly arrayed homologous genes, are highly upregulated in teb or teb atr. We conclude that TEB is required for normal progression of DNA replication and for correct expression of genes during development. Interplay between these two functions and possible mechanism leading to altered expression of specific genes will be discussed

    Cell-Cycle Control and Plant Development

    Get PDF
    The cell cycle is driven by the activity of cyclin-dependent kinase (CDK)–cyclin complexes. Therefore, internal and external signals converge on the regulation of CDK–cyclin activity to modulate cell proliferation in specific developmental processes and under various environmental conditions. CDK–cyclin activity is fine-tuned by multiple mechanisms, for example, transcriptional control, protein degradation, phosphorylation, and binding to CDK inhibitor. These molecular mechanisms underlie the regulation of the entry into or the exit from the cell cycle, the rate of cell cycle, or the transition from the mitotic cell cycle to the endocycle. The multiple mechanisms regulating CDK–cyclin activity coordinately enable the elaborate control of cell cycle by various upstream signals. Here, we review the molecular mechanisms that regulate the cell cycle and the endocycle in plants. We also introduce the recent progress in elucidating the regulatory mechanisms underlying plant development and the stress response in terms of cell-cycle control

    DNA damage inhibits lateral root formation by up-regulating cytokinin biosynthesis genes in Arabidopsis thaliana

    Get PDF
    Lateral roots (LRs) are an important organ for water and nutrient uptake from soil. Thus, control of LR formation is crucial in the adaptation of plant growth to environmental conditions. However, the underlying mechanism controlling LR formation in response to external factors has remained largely unknown. Here, we found that LR formation was inhibited by DNA damage. Treatment with zeocin, which causes DNA double‐strand breaks, up‐regulated several DNA repair genes in the LR primordium (LRP) through the signaling pathway mediated by the transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1). Cell division was severely inhibited in the LRP of zeocin‐treated sog1‐1 mutant, which in turn inhibited LR formation. This result suggests that SOG1‐mediated maintenance of genome integrity is crucial for proper cell division during LRP development. Furthermore, zeocin induced several cytokinin biosynthesis genes in a SOG1‐dependent manner, thereby activating cytokinin signaling in the LRP. LR formation was less inhibited by zeocin in mutants defective in cytokinin biosynthesis or signaling, suggesting that elevated cytokinin signaling is crucial for the inhibition of LR formation in response to DNA damage. We conclude that SOG1 regulates DNA repair and cytokinin signaling separately and plays a key role in controlling LR formation under genotoxic stress
    corecore