8 research outputs found

    Exploring 3D microstructural evolution in Li-Sulfur battery electrodes using in-situ X-ray tomography

    Get PDF
    Lithium sulfur (Li-S) batteries offer higher theoretical specific capacity, lower cost and enhanced safety compared to current Li-ion battery technology. However, the multiple reactions and phase changes in the sulfur conversion cathode result in highly complex phenomena that significantly impact cycling life. For the first time to the authors’ knowledge, a multi-scale 3D in-situ tomography approach is used to characterize morphological parameters and track microstructural evolution of the sulfur cathode across multiple charge cycles. Here we show the uneven distribution of the sulfur phase fraction within the electrode thickness as a function of charge cycles, suggesting significant mass transport limitations within thick-film sulfur cathodes. Furthermore, we report a shift towards larger particle sizes and a decrease in volume specific surface area with cycling, suggesting sulfur agglomeration. Finally, we demonstrate the nano-scopic length-scale required for the features of the carbon binder domain to become discernible, confirming the need for future work on in-situ nano-tomography. We anticipate that X-ray tomography will be a powerful tool for optimization of electrode structures for Li-S batteries

    Exploring 3D microstructural evolution in Li-Sulfur battery electrodes using in-situ X-ray tomography

    Get PDF
    Lithium sulfur (Li-S) batteries offer higher theoretical specific capacity, lower cost and enhanced safety compared to current Li-ion battery technology. However, the multiple reactions and phase changes in the sulfur conversion cathode result in highly complex phenomena that significantly impact cycling life. For the first time to the authors’ knowledge, a multi-scale 3D in-situ tomography approach is used to characterize morphological parameters and track microstructural evolution of the sulfur cathode across multiple charge cycles. Here we show the uneven distribution of the sulfur phase fraction within the electrode thickness as a function of charge cycles, suggesting significant mass transport limitations within thick-film sulfur cathodes. Furthermore, we report a shift towards larger particle sizes and a decrease in volume specific surface area with cycling, suggesting sulfur agglomeration. Finally, we demonstrate the nano-scopic length-scale required for the features of the carbon binder domain to become discernible, confirming the need for future work on in-situ nano-tomography. We anticipate that X-ray tomography will be a powerful tool for optimization of electrode structures for Li-S batteries

    Evolution of Electrochemical Cell Designs for In-Situ and Operando 3D Characterization

    No full text
    Lithium-based rechargeable batteries such as lithium-ion (Li-ion), lithium-sulfur (Li-S), and lithium-air (Li-air) cells typically consist of heterogenous porous electrodes. In recent years, there has been growing interest in the use of in-situ and operando micro-CT to capture their physical and chemical states in 3D. The development of in-situ electrochemical cells along with recent improvements in radiation sources have expanded the capabilities of micro-CT as a technique for longitudinal studies on operating mechanisms and degradation. In this paper, we present an overview of the capabilities of the current state of technology and demonstrate novel tomography cell designs we have developed to push the envelope of spatial and temporal resolution while maintaining good electrochemical performance. A bespoke PEEK in-situ cell was developed, which enabled imaging at a voxel resolution of ca. 230 nm and permitted the identification of sub-micron features within battery electrodes. To further improve the temporal resolution, future work will explore the use of iterative reconstruction algorithms, which require fewer angular projections for a comparable reconstruction

    Microstructural evolution of battery electrodes during calendering

    No full text
    Calendering is a crucial manufacturing process in the optimization of battery performance and lifetime due to its significant effect on the 3D electrode microstructure. By conducting an in situ calendering experiment on lithium-ion battery cathodes using X-ray nano-computed tomography, here we show that the electrodes composed of large particles with a broad size distribution experience heterogeneous microstructural self-arrangement. At high C-rates, the performance is predominantly restricted by sluggish solid-state diffusion, which is exacerbated by calendering due to the increased microstructural and lithiation heterogeneity, leading to active material underutilization. In contrast, electrodes consisting of small particles are structurally stable with more homogeneous deformation and a lower tortuosity, showing a much higher rated capacity that is less sensitive to calendering densification. Finally, the dependence of performance on the dual variation of both porosity and electrode thickness is investigated to provide new insights into the microstructural optimization for different applications in electrode manufacturing

    The Detection of Monoclinic Zirconia and Non-Uniform 3D Crystallographic Strain in a Re-Oxidized Ni-YSZ Solid Oxide Fuel Cell Anode

    No full text
    The solid oxide fuel cell (SOFC) anode is often composed of nickel (Ni) and yttria-stabilized zirconia (YSZ). The yttria is added in small quantities (e.g., 8 mol %) to maintain the crystallographic structure throughout the operating temperatures (e.g., room-temperature to >800 °C). The YSZ skeleton provides a constraining structural support that inhibits degradation mechanisms such as Ni agglomeration and thermal expansion miss-match between the anode and electrolyte layers. Within this structure, the Ni is deposited in the oxide form and then reduced during start-up; however, exposure to oxygen (e.g., during gasket failure) readily re-oxidizes the Ni back to NiO, impeding electrochemical performance and introducing complex structural stresses. In this work, we correlate lab-based X-ray computed tomography using zone plate focusing optics, with X-ray synchrotron diffraction computed tomography to explore the crystal structure of a partially re-oxidized Ni/NiO-YSZ electrode. These state-of-the-art techniques expose several novel findings: non-isotropic YSZ lattice distributions; the presence of monoclinic zirconia around the oxidation boundary; and metallic strain complications in the presence of variable yttria content. This work provides evidence that the reduction–oxidation processes may destabilize the YSZ structure, producing monoclinic zirconia and microscopic YSZ strain, which has implications upon the electrode’s mechanical integrity and thus lifetime of the SOFC

    3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling

    Get PDF
    Driving range and fast charge capability of electric vehicles are heavily dependent on the 3D microstructure of lithium-ion batteries (LiBs) and substantial fundamental research is required to optimise electrode design for specific operating conditions. Here we have developed a full microstructure-resolved 3D model using a novel X-ray nano-computed tomography (CT) dual-scan superimposition technique that captures features of the carbon-binder domain. This elucidates how LiB performance is markedly affected by microstructural heterogeneities, particularly under high rate conditions. The elongated shape and wide size distribution of the active particles not only affect the lithium-ion transport but also lead to a heterogeneous current distribution and non-uniform lithiation between particles and along the through-thickness direction. Building on these insights, we propose and compare potential graded-microstructure designs for next-generation battery electrodes. To guide manufacturing of electrode architectures, in-situ X-ray CT is shown to reliably reveal the porosity and tortuosity changes with incremental calendering steps

    Multi-length scale microstructural design of lithium-ion battery electrodes for improved discharge rate performance

    No full text
    Fast discharge capability of automotive batteries not only affects the acceleration and climbing performance of electric vehicles, but also the accessible driving range under complex driving cycles. Understanding the intricate physical and chemical processes across multiple length-scales is critical to assist the strategic design of electrodes for improved rate performance. Here, we correlate the discharge rate performance of Ni-rich LiNi1−x−yCoxMnyO2 (NMC) cathodes to the electrode architectures, ranging from the crystallographic orientations, surface morphology and cracks at single particle level, to the factors that affect the dominance of the solid and liquid-state transport (SST and LST) at electrode level. A random orientation of the primary particles is found to incur an increase of the SST resistance by a factor of 2.35 at 5C and a heterogeneous intra-particle lithiation. Internal cracks significantly restrict the accessibility to the active material. Double-layered particles are proved to be a more promising candidate than single-crystal particles. At electrode level, the SST-dominance depth is quantified for the first time to guide the microstructural tuning and rational operating windows are proposed for electrodes of various architectures. The reaction front is observed to shuttle across the electrode depth to mitigate the polarization, which can provide valuable insights into the battery management development. Finally, by comparing the performance of single crystal and polycrystalline NMC811 electrodes, it is suggested that electrode thickness and porosity are more critical in the former for enhanced discharge rate performance, in contrast to polycrystalline electrodes, in which a gradient particle fraction and size distribution are recommended
    corecore