4,518 research outputs found

    Significance of low energy impact damage on modal parameters of composite beams by design of experiments

    Get PDF
    This paper presents an experimental study on the effects of multi-site damage on the vibration response of composite beams damaged by low energy impacts around the barely visible impact damage limit (BVID). The variation of the modal parameters with different levels of impact energy and density of damage is studied. Vibration tests have been carried out with both burst random and classical sine dwell excitations in order to compare that which of the methods among Polymax and Half Bandwidth Method is more suitable for damping estimation in the presence of damage. Design of experiments (DOE) performed on the experimental data show that natural frequency is a more sensitive parameter for damage detection than the damping ratio. It also highlighted energy of impact as the factor having a more significant effect on the modal parameters. Half Bandwidth Method is found to be unsuitable for damping estimation in the presence of damage

    Critical Currents of Josephson-Coupled Wire Arrays

    Full text link
    We calculate the current-voltage characteristics and critical current I_c^{array} of an array of Josephson-coupled superconducting wires. The array has two layers, each consisting of a set of parallel wires, arranged at right angles, such that an overdamped resistively-shunted junction forms wherever two wires cross. A uniform magnetic field equal to f flux quanta per plaquette is applied perpendicular to the layers. If f = p/q, where p and q are mutually prime integers, I_c^{array}(f) is found to have sharp peaks when q is a small integer. To an excellent approximation, it is found in a square array of n^2 plaquettes, that I_c^{array}(f) \propto (n/q)^{1/2} for sufficiently large n. This result is interpreted in terms of the commensurability between the array and the assumed q \times q unit cell of the ground state vortex lattice.Comment: 4 pages, 4 figure
    • …
    corecore