109 research outputs found

    Cloud radiative forcing effects on observed and simulated global energetics

    Get PDF
    The research objectives are the following: (1) to examine how cloud-radiation processes generate/destroy available potential energy by altering both meridional and zonal temperature gradient; (2) to investigate how the atmospheric dynamic fields respond to the cloud-altered mass distributions through the energy conversion circuit; and (3) to examine how the improved version of CCM1 simulates observationally obtained cloud-radiative forcing and its associated energetics and circulations. Significant accomplishments in the past year towards obtaining these objectives and the focus of current research and plans for next year are discussed

    Retrieval of Ice-Over-Water Cloud Microphysical and Optical Properties Using Passive Radiometers

    Get PDF
    Current satellite cloud products from passive radiometers provide effective single‐layer cloud properties by assuming a homogeneous cloud in a pixel, resulting in inevitable biases when multiple‐layer clouds are present in a vertical column. We devise a novel method to retrieve cloud vertical properties for ice‐over‐water clouds using passive radiometers. Based on the absorptivity differences of liquid water and ice clouds at four shortwave‐infrared channels (centered at 0.87, 1.61, 2.13, and 2.25 μm), cloud optical thicknesses (COT) and effective radii of both upper‐layer ice and lower‐layer liquid water clouds are inferred simultaneously. The algorithm works most effectively for clouds with ice COT 5. The simulated spectral reflectances based on our retrieved ice‐over‐water clouds become more consistent with observations than those with a single‐layer assumption. This new algorithm will improve our understanding of clouds, and we suggest that these four cloud channels should be all included in future satellite sensors

    Retrieval of Ice-Over-Water Cloud Microphysical and Optical Properties Using Passive Radiometers

    Get PDF
    Current satellite cloud products from passive radiometers provide effective single‐layer cloud properties by assuming a homogeneous cloud in a pixel, resulting in inevitable biases when multiple‐layer clouds are present in a vertical column. We devise a novel method to retrieve cloud vertical properties for ice‐over‐water clouds using passive radiometers. Based on the absorptivity differences of liquid water and ice clouds at four shortwave‐infrared channels (centered at 0.87, 1.61, 2.13, and 2.25 μm), cloud optical thicknesses (COT) and effective radii of both upper‐layer ice and lower‐layer liquid water clouds are inferred simultaneously. The algorithm works most effectively for clouds with ice COT 5. The simulated spectral reflectances based on our retrieved ice‐over‐water clouds become more consistent with observations than those with a single‐layer assumption. This new algorithm will improve our understanding of clouds, and we suggest that these four cloud channels should be all included in future satellite sensors

    Clinical Impact of Tumor Regression Grade after Preoperative Chemoradiation for Locally Advanced Rectal Cancer: Subset Analyses in Lymph Node Negative Patients

    Get PDF
    BACKGROUND: We investigated the prognostic significance of tumor regression grade (TRG) after preoperative chemoradiation therapy (preop-CRT) for locally advanced rectal cancer especially in the patients without lymph node metastasis. METHODS: One-hundred seventy-eight patients who had cT3/4 tumors were given 5,040 cGy preoperative radiation with 5-fluorouracil/leucovorin chemotherapy. A total mesorectal excision was performed 4-6 weeks after preop-CRT. TRG was defined as follows: grade 1 as no cancer cells remaining; grade 2 as cancer cells outgrown by fibrosis; grade 3 as a minimal presence or absence of regression. The prognostic significance of TRG in comparison with histopathologic staging was analyzed. RESULTS: Seventeen patients (9.6%) showed TRG1. TRG was found to be significantly associated with cancer-specific survival (CSS; P = 0.001) and local recurrence (P = 0.039) in the univariate study, but not in the multivariate analysis. The ypN stage was the strongest prognostic factor in the multivariate analysis. Subgroup analysis revealed TRG to be an independent prognostic factor for the CSS of ypN0 patients (P = 0.031). TRG had a stronger impact on the CSS of ypN (-) patients (P = 0.002) than on that of ypN (+) patients (P = 0.521). In ypT2N0 and ypT3N0, CSS was better for TRG2 than for TRG3 (P = 0.041, P = 0.048), and in ypN (-) and TRG2 tumors, CSS was better for ypT1-2 than for ypT3-4 (P = 0.034). CONCLUSION: TRG was found to be the strongest prognostic factor in patients without lymph node metastasis (ypN0), and different survival was observed according to TRG among patients with a specific histopathologic stage. Thus, TRG may provide an accurate prediction of prognosis and may be used for f tailoring treatment for patients without lymph node metastasis.ope

    Could Fractional Exhaled Nitric Oxide Test be Useful in Predicting Inhaled Corticosteroid Responsiveness in Chronic Cough? A Systematic Review

    Get PDF
    © 2016 Background Fractional exhaled nitric oxide (FENO) is a safe and convenient test for assessing T H 2 airway inflammation, which is potentially useful in the management of patients with chronic cough. Objective To summarize the current evidence on the diagnostic usefulness of FENO for predicting inhaled corticosteroid (ICS) responsiveness in patients with chronic cough. Methods A systematic literature review was conducted to identify articles published in peer-reviewed journals up to February 2015, without language restriction. We included studies that reported the usefulness of FENO (index test) for predicting ICS responsiveness (reference standard) in patients with chronic cough (target condition). The data were extracted to construct a 2 × 2 accuracy table. Study quality was assessed with Quality Assessment of Diagnostic Accuracy Studies 2. Results We identified 5 original studies (2 prospective and 3 retrospective studies). We identified considerable heterogeneities in study design and outcome definitions, and thus were unable to perform a meta-analysis. The proportion of ICS responders ranged from 44% to 59%. Sensitivity and specificity ranged from 53% to 90%, and from 63% to 97%, respectively. The reported area under the curve ranged from abou t 0.60 to 0.87; however, studies with a prospective design and a lower prevalence of asthma had lower area under the curve values. None measured placebo effects or objective cough frequency. Conclusions We did not find strong evidence to support the use of FENO tests for predicting ICS responsiveness in chronic cough. Further studies need to have a randomized, placebo-controlled design, and should use validated measurement tools for cough. Standardization would facilitate the development of clinical evidence

    Explicitly determined sea ice emissivity and emission temperature over the Arctic for surface‐sensitive microwave channels

    Get PDF
    Data assimilation of satellite microwave measurements is one of the importantkeys to improving weather forecasting over the Arctic region. However, the useofsurface-sensitivemicrowave-soundingchannelmeasurementsfordataassim-ilation or retrieval has been limited, especially during winter, due to the poorlyconstrained sea ice emissivity. In this study, aiming at more use of those channelmeasurements in the data assimilation, we propose an explicit method for speci-fying the surface radiative boundary conditions (namely emissivity and emittinglayer temperature of snow and ice). These were explicitly determined with aradiativetransfermodelforsnowandiceandwithsnow/icephysicalparameters(i.e. snow/ice depths and vertical distributions of temperature, density, salinity,and grain size) simulated from the thermodynamically driven snow/ice growthmodel. We conducted 1D-Var experiments in order to examine whether thisapproach can help to use the surface-sensitive microwave temperature channelmeasurements over the Arctic sea ice region for data assimilation. Results showthat (1) the surface-sensitive microwave channels can be used in the 1D-Varretrieval, and (2) the specification of the radiative boundary condition at thesurface using the snow/sea ice emission model can significantly improve theatmospheric temperature retrieval, especially in the lower troposphere (500hPato surface). The successful retrieval suggests that useful information can beextracted from surface-sensitive microwave-sounding channel radiances oversea ice surfaces through the explicit determination of snow/ice emissivity andemitting layer temperature

    Reduction of Dichlorosilane-Based Tungsten Silicide Resistivity by Amorphization and Its Applicability as an Electrode

    Get PDF
    The impact of ion implantation on dichlorosilane-based tungsten silicide is reported with an emphasis on structural changes and the formation of low-resistivity silicide. It was found that implantation to the as-deposited dichlorosilane-based tungsten layer with the hexagonal close-packed structure resulted in amorphization. After thermal annealing for crystallization, the amorphized silicide was converted to the large-grain-sized tetragonal structure in which the resistivity of the silicide was about 30% lower than that of the conventional structure. In addition, the surface of the implanted silicide was smoother than that of the conventional one. The resistivity after thermal activation depended on the implantation conditions: implantation species, energy, and dose. Among all implantation species tested, phosophorus ions were found to be the most effective in terms of device fabrication. For optimized device performance, the energy should be controlled to contain the ions in the silicide. With this condition, device performance was not adversely affected, and line resistance and dopant depletion were improved

    Intrahepatic bile duct adenoma in a patient with chronic hepatitis B accompanied by elevation of alpha-fetoprotein

    Get PDF
    A 51-year-old male patient with chronic hepatitis B was referred to our hospital due to a 1-cm liver nodule on ultrasonography. Alpha-fetoprotein (AFP) was slightly elevated. The nodule showed prolonged enhancement on dynamic liver magnetic resonance imaging and appeared as a hyperintensity on both diffusion-weighted and T2-weighted imaging. The nodule was followed up because it was small and typical findings of hepatocellular carcinoma (HCC) were not observed in the dynamic imaging investigations. However, liver contrast-enhanced ultrasonography performed 1 month later showed enhancement during the arterial phase and definite washout during the delayed phase. Also, AFP had increased to over 200 ng/mL even though AST and ALT were decreased after administering an antiviral agent. He was presumptively diagnosed as HCC and underwent liver segmentectomy. Microscopy findings of the specimen indicated bile duct adenoma. After resection, the follow-up AFP had decreased to within the normal range. This patient represents a case of bile duct adenoma with AFP elevation mimicking HCC on contrast-enhanced ultrasonography
    corecore