72 research outputs found
Kopfschmerz bei Parietal- und Okzipitallappenepilepsien
Epilepsiepatienten leiden überdurchschnittlich häufig unter Kopfschmerzen. Dies gilt insbesondere für Patienten mit idiopathisch generalisierten und parietookzipitalen Epilepsien. Die Häufigkeit des gemeinsamen Auftretens von Kopfschmerzen und Epilepsie überschreitet dabei die rechnerische Koinzidenz, sodass von einer Komorbidität beider Syndrome auszugehen ist. Bestärkt wird diese Hypothese durch überlappende genetische Veränderungen sowie gemeinsame pathophysiologische Mechanismen. Bis zu 62 % der Patienten mit z. B. Parietal- und Okzipitallappenepilepsie (POLE) geben Kopfschmerzen an. Diese treten v. a. nach dem Anfall (postiktal) auf und manifestieren sich am häufigsten als Migräne-ähnlicher Kopfschmerz oder Spannungskopfschmerz. Seltener kommt es zu Kopfschmerzen vor (periiktal), während (iktal) oder zwischen (interiktal) epileptischen Anfällen. Bei transienten neurologischen Ausfallsymptomen mit begleitenden Kopfschmerzen ist differenzialdiagnostisch neben der Migräne an vaskuläre Ereignisse wie Synkopen oder eine transiente ischämische Attacke zu denken.The prevalence of headache in epilepsy patients is above average compared to the general population. This is especially true for patients with idiopathic generalized and parieto-occipital epilepsies. Comorbidity of both syndromes is suspected as the frequency of the joint occurrence of headache and epilepsy exceeds the statistical coincidence rate. This hypothesis is supported by data on shared genetic variants as well as overlapping pathophysiological mechanisms. Up to 62% of patients with parietal and occipital lobe epilepsy (POLE) report headaches. These occur especially following seizures (postictally) and with migraine-like or tension-type characteristics. Less frequently, headache manifests before (preictal), during (ictal) or between (interictal) epileptic seizures. The most relevant differential diagnoses for paroxysmal events with neurological deficits and accompanying headache are migraine and vascular events, such as syncope and transient ischemic attacks
Multimodal Imaging in Extratemporal Epilepsy Surgery
Neuroimaging is crucial for the evaluation of patients considered for resective epilepsy surgery. Multimodal image fusion is a new tool to integrate all available localizing information on the individual epileptogenic network in a three-dimensional (3D) manner to plan invasive EEG recordings and delineate the epileptogenic zone from the eloquent cortex for the neurosurgical planning of a tailored resection. Here, we illustrate the multimodal fusion of images from different modalities in a patient with medically intractable non-lesional frontal lobe epilepsy who underwent partial frontal lobe resection, rendering him seizure-free
The human thalamus orchestrates neocortical oscillations during NREM sleep
A hallmark of non-rapid eye movement sleep is the coordinated interplay of slow oscillations (SOs) and sleep spindles. Traditionally, a cortico-thalamo-cortical loop is suggested to coordinate these rhythms: neocortically-generated SOs trigger spindles in the thalamus that are projected back to neocortex. Here, we used intrathalamic recordings from human epilepsy patients to test this canonical interplay. We show that SOs in the anterior thalamus precede neocortical SOs (peak −50 ms), whereas concurrently-recorded SOs in the mediodorsal thalamus are led by neocortical SOs (peak +50 ms). Sleep spindles, detected in both thalamic nuclei, preceded their neocortical counterparts (peak −100 ms) and were initiated during early phases of thalamic SOs. Our findings indicate an active role of the anterior thalamus in organizing sleep rhythms in the neocortex and highlight the functional diversity of thalamic nuclei in humans. The thalamic coordination of sleep oscillations could have broad implications for the mechanisms underlying memory consolidation
The human thalamus orchestrates neocortical oscillations during NREM sleep
A hallmark of non-rapid eye movement (NREM) sleep is the coordinated interplay of slow oscillations (SOs) and sleep spindles. Traditionally, a cortico-thalamo-cortical loop is suggested to coordinate these rhythms: neocortically-generated SOs trigger spindles in the thalamus that are projected back to neocortex. Here, we used direct intrathalamic recordings from human epilepsy patients to test this canonical interplay. We show that SOs in the anterior thalamus precede neocortical SOs, whereas concurrently-recorded SOs in the mediodorsal thalamus are led by neocortical SOs. Furthermore, sleep spindles, detected in both thalamic nuclei, preceded their neocortical counterparts and were initiated during early phases of thalamic SOs. Our findings indicate an active role of the anterior thalamus in organizing the cardinal sleep rhythms in the neocortex and highlight the functional diversity of specific thalamic nuclei in humans. The concurrent coordination of sleep oscillations by the thalamus could have broad implications for the mechanisms underlying memory consolidation
Unilateral Blinking: Insights from Stereo-EEG and Tractography
To study the neuroanatomical correlate of involuntary unilateral blinking in humans, using the example of patients with focal epilepsy. Patients with drug resistant focal epilepsy undergoing presurgical evaluation with stereotactically implanted EEG-electrodes (sEEG) were recruited from the local epilepsy monitoring unit. Only patients showing ictal unilateral blinking or unilateral blinking elicited by direct electrical stimulation were included (n = 16). MRI and CT data were used for visualization of the electrode positions. In two patients, probabilistic tractography with seeding from the respective electrodes was additionally performed. Three main findings were made: (1) involuntary unilateral blinking was associated with activation of the anterior temporal region, (2) tractography showed widespread projections to the ipsilateral frontal, pericentral, occipital, limbic and cerebellar regions and (3) blinking was observed predominantly in female patients with temporal lobe epilepsies. Unilateral blinking was found to be associated with an ipsilateral activation of the anterior temporal region. We suggest that the identified network is not part of the primary blinking control but might have modulating influence on ipsilateral blinking by integrating contextual information
Hemispheric differences in the duration of focal onset seizures
OBJECTIVE To assess hemispheric differences in the duration of focal onset seizures and its association with clinical and demographic factors.
METHODS A retrospective analysis was performed on adult patients with drug-resistant unifocal epilepsy, who underwent intracranial EEG recording between 01/2006 and 06/2016. Seizure duration was determined based on the subdural and/or stereo-EEG (sEEG) recordings. Hemispheric differences in seizure duration were statistically evaluated with regard to clinical and demographic data. RESULTS In total, 69 patients and 654 focal onset seizures were included. The duration of seizures with left-hemispheric onset (n~=~297) was by trend longer (91.88~±~93.92~s) than of right-hemispheric seizures (n~=~357; 71.03~±~68.53~s; p~=~.193). Significant hemispheric differences in seizures duration were found in temporal lobe seizures (n~=~225; p~=~.013), especially those with automotor manifestation (n~=~156; p~=~.045). A prolonged duration was also found for left-hemispheric onset seizures with secondary generalized commencing during waking state (n~=~225; p~=~.034), but not during sleep. A similar hemispheric difference in seizure duration was found in female patients (p~=~.040), but not in men.
CONCLUSIONS Hemispheric differences in seizure duration were revealed with significantly longer durations in case of left-hemispheric seizure onset. The observed differences in seizure duration might result from brain asymmetry and add new aspects to the understanding of seizure propagation and termination
Who seizes longest? Impact of clinical and demographic factors
Objective
To investigate the impact of clinical and demographic parameters on the duration of focal onset seizures with and without secondary generalization using precise duration measurements from intracranial electroencephalographic (iEEG) recordings.
Methods
Patients with unifocal epilepsy syndromes and iEEG recording were retrospectively identified from the database of the local epilepsy center (2006‐2016). Seizure duration was defined as time difference of iEEG seizure pattern onset and cessation. The seizure semiology was classified based on video recordings. Clinical and demographic data were extracted from patient reports.
Results
In total, 69 adults were included, and 654 focal onset seizures were analyzed. Focal to bilateral tonic‐clonic seizures (FBTCSs; 98/654) were significantly longer than focal seizures (FSs) without generalization (FS‐BTCs; 556/654, P < .001), and most FSs (545/654, 83.3%) terminated within 2 minutes. The duration of FSs was prolonged with increasing age of the patients (P = .003) and was significantly shortened (P < .001) by evolution into an FBTCS. FBTCSs with lateralizing semiologies like version (P = .015) and sign of four (P = .043) were associated with longer bilateral tonic‐clonic manifestations. Furthermore, FBTCSs with preceding aura, frontal origin, or onset during sleep were by trend shorter. Age (P < .001) and disease duration (P = .028) were essential for prediction of FS‐BTC duration, whereas the vigilance state (P = .085) was the main prediction factor for the duration of FBTCSs.
Significance
The identified modifiers of seizure duration are of great relevance for clinical risk evaluation, especially in the aging epilepsy patient suffering from temporal lobe epilepsy with secondary generalized seizures
Seizures in Alzheimer's disease are highly recurrent and associated with a poor disease course
BACKGROUND Seizures are an important comorbidity in Alzheimer's disease (AD). Conflicting results regarding clinical parameters associated with seizures in AD were previously reported. Data on seizure recurrence risk, a crucial parameter for treatment decisions, are lacking.
METHODS National Alzheimer's Coordinating Center data were analyzed. Seizure prevalence in AD and an association with disease duration were investigated. Associations of seizures with age of AD onset and with cognitive and functional performance, and seizure recurrence risk were studied.
RESULTS 20,745 individuals were investigated. In AD dementia, seizure recurrence risk was 70.4% within 7.5 months. Seizure history was associated with an earlier age of onset of cognitive symptoms (seizures vs. no seizures: 64.7 vs. 70.4 years; p < 0.0001) and worse cognitive and functional performance (mean MMSE score: 16.6 vs. 19.6; mean CDR-sum of boxes score: 9.3 vs. 6.8; p < 0.0001; adjusted for disease duration and age). Seizure prevalence increased with duration of AD dementia (standardized OR = 1.55, 95% CI = 1.39–1.73, p < 0.0001), rising from 1.51% at 4.8 years to 5.43% at 11 years disease duration. Seizures were more frequent in AD dementia compared to normal controls (active seizures: 1.51% vs. 0.35%, p < 0.0001, OR = 4.34, 95% CI = 3.01–6.27; seizure history: 3.14% vs. 1.57%, p < 0.0001, OR = 2.03, 95% CI = 1.67–2.46).
CONCLUSION Seizures in AD dementia feature an exceptionally high recurrence risk and are associated with a poor course of cognitive symptoms. AD patients are at an increased risk for seizures, particularly in later disease stages. Our findings emphasize a need for seizure history assessment in AD, inform individual therapeutic decisions and underline the necessity of systematic treatment studies of AD-associated epilepsy
NeuroKinect: A Novel Low-Cost 3Dvideo-EEG System for Epileptic Seizure Motion Quantification
Epilepsy is a common neurological disorder which affects 0.5-1% of the world population. Its diagnosis relies both on Electroencephalogram (EEG) findings and characteristic seizure -induced body movements - called seizure semiology. Thus, synchronous EEG and (2D) video recording systems (known as Video-EEG) are the most accurate tools for epilepsy diagnosis. Despite the establishment of several quantitative methods for EEG analysis, seizure semiology is still analyzed by visual inspection, based on epileptologists' subjective interpretation of the movements of interest (MOIs) that occur during recorded seizures. In this contribution, we present NeuroKinect, a low-cost, easy to setup and operate solution for a novel 3Dvideo-EEG system. It is based on a RGB-D sensor (Microsoft Kinect camera) and performs 24/7 monitoring of an Epilepsy Monitoring Unit (EMU) bed. It does not require the attachment of any reflectors or sensors to the patient's body and has a very low maintenance load. To evaluate its performance and usability, we mounted a state-of-the-art 6-camera motion-capture system and our low-cost solution over the same EMU bed. A comparative study of seizure-simulated MOIs showed an average correlation of the resulting 3D motion trajectories of 84.2%. Then, we used our system on the routine of an EMU and collected 9 different seizures where we could perform 3D kinematic analysis of 42 MOIs arising from the temporal (TLE) (n = 19) and extratemporal (ETE) brain regions (n = 23). The obtained results showed that movement displacement and movement extent discriminated both seizure MOI groups with statistically significant levels (mean = 0.15 m vs. 0.44 m, p<0.001;mean = 0.068 m(3) vs. 0.14 m(3), p< 0.05, respectively). Furthermore, TLE MOIs were significantly shorter than ETE (mean = 23 seconds vs 35 seconds, p< 0.01) and presented higher jerking levels (mean = 345 ms(-3) vs 172 ms(-3), p< 0.05). Our newly implemented 3D approach is faster by 87.5% in extracting body motion trajectories when compared to a 2D frame by frame tracking procedure. We conclude that this new approach provides a more comfortable (both for patients and clinical professionals), simpler, faster and lower-cost procedure than previous approaches, therefore providing a reliable tool to quantitatively analyze MOI patterns of epileptic seizures in the routine of EMUs around the world. We hope this study encourages other EMUs to adopt similar approaches so that more quantitative information is used to improve epilepsy diagnosis
- …