10 research outputs found

    Genome-wide association study of root-lesion nematodes Pratylenchus species and crown rot Fusarium culmorum in bread wheat

    Get PDF
    Triticum aestivum L., also known as common wheat, is affected by many biotic stresses. Root diseases are the most difficult to tackle due to the complexity of phenotypic evaluation and the lack of resistant sources compared to other biotic stress factors. Soil-borne pathogens such as the root-lesion nematodes caused by the Pratylenchus species and crown rot caused by various Fusarium species are major wheat root diseases, causing substantial yield losses globally. A set of 189 advanced spring bread wheat lines obtained from the International Maize and Wheat Improvement Center (CIMMYT) were genotyped with 4056 single nucleotide polymorphisms (SNP) markers and screened for root-lesion nematodes and crown rot resistance. Population structure revealed that the genotypes could be divided into five subpopulations. Genome-Wide Association Studies were carried out for both resistances to Pratylenchus and Fusarium species. Based on our results, 11 different SNPs on chromosomes 1A, 1B, 2A, 3A, 4A, 5B, and 5D were significantly associated with root-lesion nematode resistance. Seven markers demonstrated association with P. neglectus, while the remaining four were linked to P. thornei resistance. In the case of crown rot, eight different markers on chromosomes 1A, 2B, 3A, 4B, 5B, and 7D were associated with Fusarium crown rot resistance. Identification and screening of root diseases is a challenging task; therefore, the newly identified resistant sources/genotypes could be exploited by breeders to be incorporated in breeding programs. The use of the identified markers in marker-assisted selection could enhance the selection process and cultivar development with root-lesion nematode and crown rot resistance

    Exploring the Genetic Variability and Potential Correlations Between Nutritional Quality and Agro-Physiological Traits in Kabuli Chickpea Germplasm Collection (Cicer arietinum L.)

    Get PDF
    Chickpea is an important source of plant-based protein and mineral elements such as iron (Fe) and zinc (Zn). The development of superior high-yielding germplasm with high nutritional value becomes central for any breeding program. Chickpea biofortified and nutrient-dense seeds can contribute to mitigate many human health problems associated with protein and micronutrients deficiency. In this study, 282 advanced chickpea lines were grown under field conditions to evaluate their agronomic performances and nutritional quality value. The trial was conducted under winter planting conditions during the cropping season 2017/2018 at ICARDA-Marchouch research station, Morocco. Results revealed high genetic variation and significant differences between the tested genotypes for all studied parameters. Under field conditions, the grain yield (GY) varied from 0.57 to 1.81 (t.ha–1), and 100-seed weight (HSW) ranged from 23.1 to 50.9 g. Out of the 282 genotypes, only 4 genotypes (i.e., S130109, S130058, S130066, and S130157) combined both good agronomic performances (GY, HSW) and high nutritional quality (protein, macronutrients, and micronutrients). Protein content ranged from 18.9 to 32.4%. For the whole collection, Fe content varied from 31.2 to 81 ppm, while Zn content ranged from 32.1 to 86.1 ppm. Correlation analysis indicated that the studied traits were significantly intercorrelated, with negative correlation between protein content and Zn concentration. Positive correlations were observed between grain filling time (F2M) and the micronutrients Zn, Cu, and Mn and macroelements K and Mg. Low positive correlation was also recorded between Pr and Fe concentrations. No significant correlation was observed between Fe and Zn. Positive correlations observed between main agronomic and nutritional quality traits makes easy any simultaneous enhancement when combining these traits

    Genome-Wide Association Study of Root-Lesion Nematodes Pratylenchus Species and Crown Rot Fusarium culmorum in Bread Wheat

    No full text
    Triticum aestivum L., also known as common wheat, is affected by many biotic stresses. Root diseases are the most difficult to tackle due to the complexity of phenotypic evaluation and the lack of resistant sources compared to other biotic stress factors. Soil-borne pathogens such as the root-lesion nematodes caused by the Pratylenchus species and crown rot caused by various Fusarium species are major wheat root diseases, causing substantial yield losses globally. A set of 189 advanced spring bread wheat lines obtained from the International Maize and Wheat Improvement Center (CIMMYT) were genotyped with 4056 single nucleotide polymorphisms (SNP) markers and screened for root-lesion nematodes and crown rot resistance. Population structure revealed that the genotypes could be divided into five subpopulations. Genome-Wide Association Studies were carried out for both resistances to Pratylenchus and Fusarium species. Based on our results, 11 different SNPs on chromosomes 1A, 1B, 2A, 3A, 4A, 5B, and 5D were significantly associated with root-lesion nematode resistance. Seven markers demonstrated association with P. neglectus, while the remaining four were linked to P. thornei resistance. In the case of crown rot, eight different markers on chromosomes 1A, 2B, 3A, 4B, 5B, and 7D were associated with Fusarium crown rot resistance. Identification and screening of root diseases is a challenging task; therefore, the newly identified resistant sources/genotypes could be exploited by breeders to be incorporated in breeding programs. The use of the identified markers in marker-assisted selection could enhance the selection process and cultivar development with root-lesion nematode and crown rot resistance

    Identification of Novel Quantitative Trait Loci Linked to Crown Rot Resistance in Spring Wheat

    No full text
    Crown rot (CR), caused by various Fusarium species, is a major disease in many cereal-growing regions worldwide. Fusarium culmorum is one of the most important species, which can cause significant yield losses in wheat. A set of 126 advanced International Maize and Wheat Improvement Center (CIMMYT) spring bread wheat lines were phenotyped against CR for field crown, greenhouse crown and stem, and growth room crown resistance scores. Of these, 107 lines were genotyped using Diversity Array Technology (DArT) markers to identify quantitative trait loci linked to CR resistance by genome-wide association study. Results of the population structure analysis grouped the accessions into three sub-groups. Genome wide linkage disequilibrium was large and declined on average within 20 cM (centi-Morgan) in the panel. General linear model (GLM), mixed linear model (MLM), and naïve models were tested for each CR score and the best model was selected based on quarantine-quarantine plots. Three marker-trait associations (MTAs) were identified linked to CR resistance; two of these on chromosome 3B were associated with field crown scores, each explaining 11.4% of the phenotypic variation and the third MTA on chromosome 2D was associated with greenhouse stem score and explained 11.6% of the phenotypic variation. Together, these newly identified loci provide opportunity for wheat breeders to exploit in enhancing CR resistance via marker-assisted selection or deployment in genomic selection in wheat breeding programs
    corecore