6 research outputs found

    Correction: Imaging the reactivity and width of graphene's boundary region.

    Get PDF
    Correction for 'Imaging the reactivity and width of graphene's boundary region' by Huda S. AlSalem et al., Chem. Commun., 2020, 56, 9612-9615, DOI: 10.1039/D0CC02675A

    Assessing the Effects of Treated Wastewater Irrigation on Soil Physico-Chemical Properties

    No full text
    For assessing the effects of wastewater on soil physical and chemical properties, manual irrigation (MI) and surface drip irrigation (SDI) systems were investigated. The experiment was conducted over 12 months. Before and after the experiment, soil samples were collected from three depths (0–20 cm, 20–40 cm and 40–60 cm) for analysis. The obtained results indicated that wastewater application probably preserves soil quality by maintaining its pH-water values whatever the irrigation system used. This study suggested that nutrient input from wastewater promotes soil microbial activity and organic matter (OM) mineralization. In fact, at the soil depths of 0–20 cm and 20–40 cm, MI using treated wastewater (TWW) leads to decrease OM content. P input may justify treated wastewater fertilizing effect in the topsoil. Moreover, TWW fertilizing effect was demonstrated by increased potassium (K) amount in the two upper soil layers (0–20 cm and 20–40 cm) following SDI system. This last system may block metals (iron (Fe), copper (Cu), cobalt (Co) and selenium (Se)) translocation to plants and their accumulation in soil. In contrast, metal translocation was maintained by the MI system. The present data is encouraging to reuse TWW for agricultural purposes, especially for orchard irrigation

    Immobilization of Strontium Aluminate into Recycled Polycarbonate Plastics towards an Afterglow and Photochromic Smart Window

    No full text
    A transparent smart window made of recycled polycarbonate plastic (PCP) waste was prepared and immobilized with strontium aluminate phosphor nanoparticles (SAPN). It has afterglow emission, super-hydrophobicity, durability, photostability, good mechanical properties, ultraviolet protection, and high optical transmittance. To create an afterglow emission polycarbonate smart window (SAPN@PCP), recycled polycarbonate waste was integrated with various concentrations of SAPN (15–52 nm). SAP micro-scale powder was made using the solid-state high temperature method. The SAP nanoparticles were produced using the top-down method. To create a colorless plastic bulk, recycled polycarbonate waste was inserted into a hot bath. This colorless plastic was thoroughly combined with SAPN and cast to create an afterglow luminous smart window. To investigate its photoluminescence properties, spectrum profiles of excitation and emission were measured. According to the luminescence parameters, the phosphorescent colorless polycarbonate plates displayed a change in color to strong green under UV illumination and greenish-yellow in a dark box. The afterglow polycarbonate smart window displayed two emission peaks at 496 and 526 nm, and an absorption wavelength of 373 nm. Upon increasing the SAPN ratio, the hydrophobic activity, hardness, photostability, and UV protection were improved. Luminescent polycarbonate substrates with lower SAPN ratio demonstrated rapid and reversible fluorescence under UV light, while the higher SAPN content in the luminous polycarbonate substrates showed afterglow

    The Design of Ternary Composite Polyurethane Membranes with an Enhanced Photocatalytic Degradation Potential for the Removal of Anionic Dyes

    No full text
    Photocatalysis is an efficient and an eco-friendly way to eliminate organic pollutants from wastewater and filtration media. The major dilemma coupled with conventional membrane technology in wastewater remediation is fouling. In this study, the photocatalytic degradation potential of novel thermoplastic polyurethane (TPU) based NiO on aminated graphene oxide (NH2-GO) nanocomposite membranes was explored. The fabrication of TPU-NiO/NH2-GO membranes was achieved by the phase inversion method and analyzed for their performances. The membranes were effectively characterized in terms of surface morphology, functional group, and crystalline phase identification, using scanning electron microscopy, Fourier transformed infrared spectroscopy, and X-ray diffraction analysis, respectively. The prepared materials were investigated in terms of photocatalytic degradation potential against selected pollutants. Approximately 94% dye removal efficiency was observed under optimized conditions (i.e., reaction time = 180 min, pH 3–4, photocatalyst dose = 80 mg/100 mL, and oxidant dose = 10 mM). The optimized membranes possessed effective pure water flux and excellent dye rejection (approximately 94%) under 4 bar pressure. The nickel leaching in the treated wastewater sample was determined using inductively coupled plasma-optical emission spectrometry (ICP-OES). The obtained data was kinetically analyzed using first- and second-order reaction kinetic models. A first-order kinetic study was suited for the present study. Besides, the proposed membranes provided excellent photocatalytic ability up to six reusability cycles. The combination of TPU and NH2-GO provided effective strength to membranes and the immobilization of NiO nanoparticles improved the photocatalytic behavior

    DataSheet1_Fabrication and assessment of potent anticancer nanoconjugates from chitosan nanoparticles, curcumin, and eugenol.PDF

    No full text
    In cancer management and control, the most challenging difficulties are the complications resulting from customized therapies. The constitution of bioactive anticancer nanoconjugates from natural derivatives, e.g., chitosan (Ct), curcumin (Cur), and eugenol (Eug), was investigated for potential alternatives to cancer cells’ treatment. Ct was extracted from Erugosquilla massavensis (mantis shrimp); then, Ct nanoparticles (NCt) was fabricated and loaded with Cur and/or Eug using crosslinking emulsion/ionic-gelation protocol and evaluated as anticancer composites against CaCo2 “colorectal adenocarcinoma” and MCF7 “breast adenocarcinoma” cells. Ct had 42.6 kDa molecular weight and 90.7% deacetylation percentage. The conjugation of fabricated molecules/composites and their interactions were validated via infrared analysis. The generated nanoparticles (NCt, NCt/Cur, NCt/Eug, and NCt/Cur/Eug composites) had mean particle size diameters of 268.5, 314.9, 296.4, and 364.7 nm, respectively; the entire nanoparticles carried positive charges nearby ≄30 mV. The scanning imaging of synthesized nanoconjugates (NCt/Cur, NCt/Eug, and NCt/Cur/Eug) emphasized their homogenous distributions and spherical shapes. The cytotoxic assessments of composited nanoconjugates using the MTT assay, toward CaCo2 and MCF7 cells, revealed elevated anti-proliferative and dose-dependent activities of all nanocomposites against treated cells. The combined nanocomposites (NCt/Eug/Cur) emphasized the highest activity against CaCo2 cells (IC50 = 11.13 Όg/ml), followed by Cur/Eug then NCt/Cur. The exposure of CaCo2 cells to the nanocomposites exhibited serious DNA damages and fragmentation in exposed cancerous cells using the comet assay; the NCt/Eug/Cur nanocomposite was the most forceful with 9.54 nm tail length and 77.94 tail moment. The anticancer effectuality of innovatively combined NCt/Cur/Eug nanocomposites is greatly recommended for such biosafe, natural, biocompatible, and powerful anticancer materials, especially for combating colorectal adenocarcinoma cells, with elevated applicability, efficiency, and biosafety.</p

    Integrated management of groundwater quantity, physicochemical properties, and microbial quality in West Nile delta using a new MATLAB code and geographic information system mapping

    No full text
    Abstract Groundwater is an excellent alternative to freshwater for drinking, irrigation, and developing arid regions. Agricultural, commercial, industrial, residential, and municipal activities may affect groundwater quantity and quality. Therefore, we aimed to use advanced methods/techniques to monitor the piezometric levels and collect groundwater samples to test their physicochemical and biological characteristics. Our results using software programs showed two main types of groundwater: the most prevalent was the Na–Cl type, which accounts for 94% of the groundwater samples, whereas the Mg–Cl type was found in 6% of samples only. In general, the hydraulic gradient values, ranging from medium to low, could be attributed to the slow movement of groundwater. Salinity distribution in groundwater maps varied between 238 and 1350 mg L−1. Although lower salinity values were observed in northwestern wells, higher values were recorded in southern ones. The collected seventeen water samples exhibited brackish characteristics and were subjected to microbial growth monitoring. Sample WD12 had the lowest total bacterial count (TBC) of 4.8 ± 0.9 colony forming unit (CFU mg L−1), while WD14 had the highest TBC (7.5 ± 0.5 CFU mg L−1). None of the tested water samples, however, contained pathogenic microorganisms. In conclusion, the current simulation models for groundwater drawdown of the Quaternary aquifer system predict a considerable drawdown of water levels over the next 10, 20, and 30 years with the continuous development of the region
    corecore