45 research outputs found

    Swarming in shallow waters

    Get PDF
    A swarm is a collection of separate objects that move autonomously in the same direction in a concerted fashion. This type of behavior is observed in ensembles of various organisms but has proven inherently difficult to realize in artificial chemical systems, where the components have to self-assemble dynamically and, at the same time, propel themselves. This paper describes a class of systems in which millimeter-sized components interact hydrodynamically and organize into dissipative structures that swarm in thin fluid layers. Depending on the geometry of the particles, various types of swarms can be engineered, including ensembles that rotate, follow a "leader", or are pushed in front of a larger particle

    Blocking of Disulfide Adsorption by Coadsorbing omega-Functionalized Alkane Thiols Revealed by Wet Stamping and Fluorescence Microscopy

    No full text
    When alkane thiols and disulfides coadsorb onto gold, they do not necessarily create a mixed monolayer. In particular, when thiols are terminated in groups capable of hydrogen bonding, they can altogether eliminate adsorption of disulfides. Such elimination can be observed directly by using fluorescently labeled disulfides and monitoring their adsorption (or lack of) by fluorescence microscopy. These experiments suggest a mechanism in which adsorption of thiols is facilitated by hydrogen bonding

    Dynamic self-assembly in ensembles of camphor boats

    No full text
    Millimeter-sized gel particles loaded with camphor and floating at the interface between water and air generate convective flows around them. These flows give rise to repulsive interparticle interactions, and mediate dynamic self-assembly of nonequilibrium particle formations. When the numbers of particles, N, are small, particle motions are uncorrelated. When, however, N exceeds a threshold value, particles organize into ordered lattices. The nature of hydrodynamic forces underlying these effects and the dynamics of the self-assembling system are modeled numerically using Navier-Stokes equations as well as analytically using scaling arguments
    corecore