40 research outputs found

    A scaling law for distinct electrocaloric cooling performance in low-dimensional organic, relaxor and anti-ferroelectrics.

    Get PDF
    Electrocaloric (EC) materials show promise in eco-friendly solid-state refrigeration and integrable on-chip thermal management. While direct measurement of EC thin-films still remains challenging, a generic theoretical framework for quantifying the cooling properties of rich EC materials including normal-, relaxor-, organic- and anti-ferroelectrics is imperative for exploiting new flexible and room-temperature cooling alternatives. Here, we present a versatile theory that combines Master equation with Maxwell relations and analytically relates the macroscopic cooling responses in EC materials with the intrinsic diffuseness of phase transitions and correlation characteristics. Under increased electric fields, both EC entropy and adiabatic temperature changes increase quadratically initially, followed by further linear growth and eventual gradual saturation. The upper bound of entropy change (∆Smax) is limited by distinct correlation volumes (V cr ) and transition diffuseness. The linearity between V cr and the transition diffuseness is emphasized, while ∆Smax = 300 kJ/(K.m3) is obtained for Pb0.8Ba0.2ZrO3. The ∆Smax in antiferroelectric Pb0.95Zr0.05TiO3, Pb0.8Ba0.2ZrO3 and polymeric ferroelectrics scales proportionally with V cr-2.2, owing to the one-dimensional structural constraint on lattice-scale depolarization dynamics; whereas ∆Smax in relaxor and normal ferroelectrics scales as ∆Smax ~ V cr-0.37, which tallies with a dipolar interaction exponent of 2/3 in EC materials and the well-proven fractional dimensionality of 2.5 for ferroelectric domain walls

    A scaling law for distinct electrocaloric cooling performance in low-dimensional organic, relaxor and anti-ferroelectrics

    Get PDF
    Electrocaloric (EC) materials show promise in eco-friendly solid-state refrigeration and integrable on-chip thermal management. While direct measurement of EC thin-films still remains challenging, a generic theoretical framework for quantifying the cooling properties of rich EC materials including normal-, relaxor-, organic- and anti-ferroelectrics is imperative for exploiting new flexible and room-temperature cooling alternatives. Here, we present a versatile theory that combines Master equation with Maxwell relations and analytically relates the macroscopic cooling responses in EC materials with the intrinsic diffuseness of phase transitions and correlation characteristics. Under increased electric fields, both EC entropy and adiabatic temperature changes increase quadratically initially, followed by further linear growth and eventual gradual saturation. The upper bound of entropy change (∆Smax) is limited by distinct correlation volumes (V cr ) and transition diffuseness. The linearity between V cr and the transition diffuseness is emphasized, while ∆Smax = 300 kJ/(K.m3) is obtained for Pb0.8Ba0.2ZrO3. The ∆Smax in antiferroelectric Pb0.95Zr0.05TiO3, Pb0.8Ba0.2ZrO3 and polymeric ferroelectrics scales proportionally with V cr −2.2, owing to the one-dimensional structural constraint on lattice-scale depolarization dynamics; whereas ∆Smax in relaxor and normal ferroelectrics scales as ∆Smax ~ V cr −0.37, which tallies with a dipolar interaction exponent of 2/3 in EC materials and the well-proven fractional dimensionality of 2.5 for ferroelectric domain walls

    Development of special bi‐material elements

    No full text

    Alternative conductor guide design for offshore structures

    No full text
    76 p.Conductor guides are one of the high cost items of a drilling platform because fabrication of the guides is not amenable to automation and is labour intensive. In order to reduce fabrication costs and increase efficiency an alternative conductor guide design is proposed to replace the conventional conductor guide design. The proposed alternative design involves the replacement of circular hollow sections by square hollow sections for the fabrication of conductor framings.RP-M-85-3

    Fracture analysis of fibre reinforced composites

    No full text
    58 p.A method was proposed to develop a 'composite' element for idealising a three-dimensional composite to an axisymmetric model which can then be easily analysed by the finite element technique. A comparison was made between the proposed and the conventional finite element methods for the elastic constants obtained from two different types of material. The results show that the proposed technique was reasonably accurate and reliable.RP 18/9

    On the Da Vinci size effect in tensile strengths of nanowires: A molecular dynamics study

    No full text
    In recent decades, size effects caused by grain size, strain gradient, typical defects etc., have been widely investigated. Nevertheless, the dependence of tensile strength on the specimen length, addressed by Da Vinci around 500 hundred years ago, has received rather limited attention, even though it is one unavoidable question to answer if people attempt to bring materials’ amazing nano-scale strengths up to macro-level. Therefore, we make efforts to study tensile behaviors of copper nanowires with a common cross-section and various lengths by employing the molecular dynamics simulations. Surprisingly, a strong size effect of Da Vinci type indeed arises. We have shown the influences of lattice orientation, temperature and prescribed notch on such a Da Vinci size effect. Two different theoretical explanations are briefly proposed for a qualitative understanding. Finally, a simple scaling rule is summarized to cover the tendencies observed

    Design and development of an automatic refuse disposal unit for high-rise dwellings

    No full text
    75 p.First the refuse collecting procedure and the refuse chute system in Singapore high rise dwellings were studied to establish design parameters. A prototype automatic refuse disposal compactor/packaging unit for high-rise buildings was designed, constructed and developed.RP-M-86-1

    Tuning the geometrical parameters of biomimetic fibrillar structures to enhance adhesion

    No full text
    Fibrillar structures are common features on the feet of many animals, such as geckos, spiders and flies. Theoretical analyses often use periodical array to simulate the assembly, and each fibril is assumed to be of equal load sharing (ELS). On the other hand, studies on a single fibril show that the adhesive interface is flaw insensitive when the size of the fibril is not larger than a critical one. In this paper, the Dugdale–Barenblatt model has been used to study the conditions of ELS and how to enhance adhesion by tuning the geometrical parameters in fibrillar structures. Different configurations in an array of fibres are considered, such as line array, square and hexagonal patterns. It is found that in order to satisfy flaw-insensitivity and ELS conditions, the number of fibrils and the pull-off force of the fibrillar interface depend significantly on the fibre separation, the interface interacting energy, the effective range of cohesive interaction and the radius of fibrils. Proper tuning of the geometrical parameters will enhance the pull-off force of the fibrillar structures. This study may suggest possible methods to design strong adhesion devices for engineering applications
    corecore