127 research outputs found

    Lower bounds for nodal sets of eigenfunctions

    Get PDF
    We prove lower bounds for the Hausdorff measure of nodal sets of eigenfunctions.Comment: To appear in Communications in Mathematical Physics; revised to include two additional references and update bibliographic informatio

    Global existence problem in T3T^3-Gowdy symmetric IIB superstring cosmology

    Full text link
    We show global existence theorems for Gowdy symmetric spacetimes with type IIB stringy matter. The areal and constant mean curvature time coordinates are used. Before coming to that, it is shown that a wave map describes the evolution of this system

    Generalized and weighted Strichartz estimates

    Full text link
    In this paper, we explore the relations between different kinds of Strichartz estimates and give new estimates in Euclidean space Rn\mathbb{R}^n. In particular, we prove the generalized and weighted Strichartz estimates for a large class of dispersive operators including the Schr\"odinger and wave equation. As a sample application of these new estimates, we are able to prove the Strauss conjecture with low regularity for dimension 2 and 3.Comment: Final version, to appear in the Communications on Pure and Applied Analysis. 33 pages. 2 more references adde

    Concerning the Wave equation on Asymptotically Euclidean Manifolds

    Full text link
    We obtain KSS, Strichartz and certain weighted Strichartz estimate for the wave equation on (Rd,g)(\R^d, \mathfrak{g}), d3d \geq 3, when metric g\mathfrak{g} is non-trapping and approaches the Euclidean metric like xρ x ^{- \rho} with ρ>0\rho>0. Using the KSS estimate, we prove almost global existence for quadratically semilinear wave equations with small initial data for ρ>1\rho> 1 and d=3d=3. Also, we establish the Strauss conjecture when the metric is radial with ρ>0\rho>0 for d=3d= 3.Comment: Final version. To appear in Journal d'Analyse Mathematiqu

    Localness of energy cascade in hydrodynamic turbulence, II. Sharp spectral filter

    Full text link
    We investigate the scale-locality of subgrid-scale (SGS) energy flux and inter-band energy transfers defined by the sharp spectral filter. We show by rigorous bounds, physical arguments and numerical simulations that the spectral SGS flux is dominated by local triadic interactions in an extended turbulent inertial-range. Inter-band energy transfers are also shown to be dominated by local triads if the spectral bands have constant width on a logarithmic scale. We disprove in particular an alternative picture of ``local transfer by nonlocal triads,'' with the advecting wavenumber mode at the energy peak. Although such triads have the largest transfer rates of all {\it individual} wavenumber triads, we show rigorously that, due to their restricted number, they make an asymptotically negligible contribution to energy flux and log-banded energy transfers at high wavenumbers in the inertial-range. We show that it is only the aggregate effect of a geometrically increasing number of local wavenumber triads which can sustain an energy cascade to small scales. Furthermore, non-local triads are argued to contribute even less to the space-average energy flux than is implied by our rigorous bounds, because of additional cancellations from scale-decorrelation effects. We can thus recover the -4/3 scaling of nonlocal contributions to spectral energy flux predicted by Kraichnan's ALHDIA and TFM closures. We support our results with numerical data from a 5123512^3 pseudospectral simulation of isotropic turbulence with phase-shift dealiasing. We conclude that the sharp spectral filter has a firm theoretical basis for use in large-eddy simulation (LES) modeling of turbulent flows.Comment: 42 pages, 9 figure

    On the Existence of a Maximal Cauchy Development for the Einstein Equations - a Dezornification

    Get PDF
    In 1969, Choquet-Bruhat and Geroch established the existence of a unique maximal globally hyperbolic Cauchy development of given initial data for the Einstein equations. Their proof, however, has the unsatisfactory feature that it relies crucially on the axiom of choice in the form of Zorn's lemma. In this paper we present a proof that avoids the use of Zorn's lemma. In particular, we provide an explicit construction of this maximal globally hyperbolic development.Comment: 25 pages, 6 figures, v2 small changes and minor correction, v3 version accepted for publicatio

    Bounds on the growth of high Sobolev norms of solutions to 2D Hartree Equations

    Full text link
    In this paper, we consider Hartree-type equations on the two-dimensional torus and on the plane. We prove polynomial bounds on the growth of high Sobolev norms of solutions to these equations. The proofs of our results are based on the adaptation to two dimensions of the techniques we previously used to study analogous problems on S1S^1, and on R\mathbb{R}.Comment: 38 page
    corecore