38 research outputs found
Maternal Age as a Determinant of Larval Growth and Survival in a Marine Fish, \u3ci\u3eSebastes Melanops\u3c/i\u3e
Relative body size has long been recognized as a factor influencing reproductive success in fishes, but maternal age has only recently been considered. We monitored growth and starvation resistance in larvae from 20 female black rockfish (Sebastes melanops), ranging in age from five to 17 years. Larvae from the oldest females in our experiments had growth rates more than three times as fast and survived starvation more than twice as long as larvae from the youngest females. Female age was a far better predictor of larval performance than female size. The apparent underlying mechanism is a greater provisioning of larvae with energy-rich triacylglycerol (TAG) lipids as female age increases. The volume of the oil globule (composed primarily of TAG) present in larvae at parturition increases with maternal age and is correlated with subsequent growth and survival. These results suggest that progeny from older females can survive under a broader range of environmental conditions compared to progeny from younger females. Age truncation commonly induced by fisheries may, therefore, have severe consequences for long-term sustainability of fish populations
Recommended from our members
Food deprivation affects vertical distribution and activity of a marine fish in a thermal gradient: potential energy-conserving mechanisms
The effects of reduced food availability on the behavior of juvenile walleye pollock Theragra chalcogramma were examined in laboratory experiments designed to test for potential energy-conserving responses. Groups of juvenile fish were held on 1 of 6 ration treatments ranging from ad libitum to near starvation, and then vertical distribution and activity levels were quantified in a 2.5 m deep water column under isothermal and thermally stratified conditions. Stratification resulted in a general shift to the upper, warmer layer in the 2 experiments employing a sharp thermocline at mid-depth, but the occurrence of fish in the colder bottom layer varied with different ration treatments. Movement into cold water increased in intermediate ration groups compared to high ration groups. Since reduced temperatures should reduce metabolic costs, this behavior is consistent with our hypothesis that food deprivation should invoke energy-saving behaviors. However, activity levels increased for fish held on intermediate rations, suggesting that the greater movement into cold water was a corollary result of increased searching for food. Fish in the lowest ration treatments had decreased activity levels, but also decreased their movement into cold water when a sharp thermocline was present, negating potential bioenergetic benefits. In the third experiment, there was a gradual thermal gradient from surface to bottom rather than a sharp thermocline. Temperatures associated with vertical positions of the fish were determined. In this experiment, clear energy-conserving responses to temperature were displayed by food-deprived fish; the average temperatures occupied by fish on starvation rations were 3 to 4 degree C colder than those of the higher ration groups. Based on the high Q sub(10) for metabolic rates of juvenile pollock, these reduced temperatures potentially conferred energy savings of up to 34%, relative to the metabolic expenditures of fish on high rations. The contrast in behavior for the lowest ration groups between sharply stratified and gradually stratified conditions suggested that the severity of the temperature gradient influenced the fishes' ability to take advantage of cold water as an energetic refuge. The behavior of fish in the laboratory was consistent with prior observations in the Bering Sea, where juvenile walleye pollock remained in surface waters if food availability was high, but initiated vertical migration into deeper, colder water with reduced prey densities. Results of this study demonstrated a broad flexibility in the behavioral mechanisms used by walleye pollock to deal with declining food levels. The initial response to food limitation was increased activity, indicative of greater searching behavior. With extended food deprivation, a switch to energy-conserving behavior was evident. The temperature responses of fish experiencing severe food limitation provided support for a bioenergetic hypothesis of diel vertical migration.Keywords: Starvation, Bioenergetics, Walleye pollock, Temperature, BehaviorKeywords: Starvation, Bioenergetics, Walleye pollock, Temperature, Behavio
Species-Specific Responses of Juvenile Rockfish to Elevated pCO2: From Behavior to Genomics
In the California Current ecosystem, global climate change is predicted to trigger large-scale changes in ocean chemistry within this century. Ocean acidification—which occurs when increased levels of atmospheric CO2 dissolve into the ocean—is one of the biggest potential threats to marine life. In a coastal upwelling system, we compared the effects of chronic exposure to low pH (elevated pCO2) at four treatment levels (i.e., pCO2 = ambient [500], moderate [750], high [1900], and extreme [2800 μatm]) on behavior, physiology, and patterns of gene expression in white muscle tissue of juvenile rockfish (genus Sebastes), integrating responses from the transcriptome to the whole organism level. Experiments were conducted simultaneously on two closely related species that both inhabit kelp forests, yet differ in early life history traits, to compare high-CO2 tolerance among species. Our findings indicate that these congeners express different sensitivities to elevated CO2 levels. Copper rockfish (S. caurinus) exhibited changes in behavioral lateralization, reduced critical swimming speed, depressed aerobic scope, changes in metabolic enzyme activity, and increases in the expression of transcription factors and regulatory genes at high pCO2 exposure. Blue rockfish (S. mystinus), in contrast, showed no significant changes in behavior, swimming physiology, or aerobic capacity, but did exhibit significant changes in the expression of muscle structural genes as a function of pCO2, indicating acclimatization potential. The capacity of long-lived, late to mature, commercially important fish to acclimatize and adapt to changing ocean chemistry over the next 50–100 years is likely dependent on species-specific physiological tolerances
Does fish larval dispersal differ between high and low latitudes?
Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of The Royal Society for personal use, not for redistribution. The definitive version was published in Proceedings of the Royal Society B Biological Sciences 280 (2013): 20130327, doi:10.1098/rspb.2013.0327.Several factors lead to expectations that the scale of larval dispersal and population
connectivity of marine animals differs with latitude. We examine this expectation for
demersal shorefishes, including relevant mechanisms, assumptions, and evidence.
We explore latitudinal differences in: 1) biological (e.g., species composition,
spawning mode, pelagic larval duration (PLD)), 2) physical (e.g., water movement,
habitat fragmentation), and 3) biophysical factors (primarily temperature, which could
strongly affect development, swimming ability, or feeding). Latitudinal differences
exist in taxonomic composition, habitat fragmentation, temperature, and larval
swimming, and each could influence larval dispersal. Nevertheless, clear evidence
for latitudinal differences in larval dispersal at the level of broad faunas is lacking.
For example, PLD is strongly influenced by taxon, habitat, and geographic region,
but no independent latitudinal trend is present in published PLD values. Any trends
in larval dispersal may be obscured by a lack of appropriate information, or use of
‘off the shelf’ information that is biased with regard to the species assemblages in
areas of concern. Biases may also be introduced from latitudinal differences in taxa
or spawning modes, as well as limited latitudinal sampling. We suggest research to
make progress on the question of latitudinal trends in larval dispersal.TK was supported by the Norwegian Research Council through project
MENUII #190286. JML was supported by ARC Discovery Grant DP110100695.
JEC and RRW were supported by the Partnership for the Interdisciplinary Study of
Coastal Oceans, funded by The David and Lucille Packard Foundation and the
Gordon and Betty Moore Foundation.2014-03-2
Recommended from our members
Early Life History and Fisheries Oceanography: New Questions in a Changing World
In the past 100 years since the birth of fisheries oceanography, research on the early life history of fishes, particularly the larval stage, has been extensive, and much progress has been made in identifying the mechanisms by which factors such as feeding success, predation, or dispersal can influence larval survival. However, in recent years, the study of fish early life history has undergone a major and, arguably, necessary shift, resulting in a growing body of research aimed at understanding the consequences of climate change and other anthropogenically induced stressors. Here, we review these efforts, focusing on the ways in which fish early life stages are directly and indirectly affected by increasing temperature; increasing COâ‚‚ concentrations, and ocean acidification; spatial, temporal, and magnitude changes in secondary production and spawning; and the synergistic effects of fishing and climate change. We highlight how these and other factors affect not only larval survivorship, but also the dispersal of planktonic eggs and larvae, and thus the connectivity and replenishment of fish subpopulations. While much of this work is in its infancy and many consequences are speculative or entirely unknown, new modeling approaches are proving to be insightful by predicting how early life stage survival may change in the future and how such changes will impact economically and ecologically important fish populations
Recommended from our members
Vulnerability to climate change of managed stocks in the California Current large marine ecosystem
Introduction: Understanding how abundance, productivity and distribution of individual species may respond to climate change is a critical first step towards anticipating alterations in marine ecosystem structure and function, as well as developing strategies to adapt to the full range of potential changes. Methods: This study applies the NOAA (National Oceanic and Atmospheric Administration) Fisheries Climate Vulnerability Assessment method to 64 federally-managed species in the California Current Large Marine Ecosystem to assess their vulnerability to climate change, where vulnerability is a function of a species’ exposure to environmental change and its biological sensitivity to a set of environmental conditions, which includes components of its resiliency and adaptive capacity to respond to these new conditions. Results: Overall, two-thirds of the species were judged to have Moderate or greater vulnerability to climate change, and only one species was anticipated to have a positive response. Species classified as Highly or Very Highly vulnerable share one or more characteristics including: 1) having complex life histories that utilize a wide range of freshwater and marine habitats; 2) having habitat specialization, particularly for areas that are likely to experience increased hypoxia; 3) having long lifespans and low population growth rates; and/or 4) being of high commercial value combined with impacts from non-climate stressors such as anthropogenic habitat degradation. Species with Low or Moderate vulnerability are either habitat generalists, occupy deep-water habitats or are highly mobile and likely to shift their ranges. Discussion: As climate-related changes intensify, this work provides key information for both scientists and managers as they address the long-term sustainability of fisheries in the region. This information can inform near-term advice for prioritizing species-level data collection and research on climate impacts, help managers to determine when and where a precautionary approach might be warranted, in harvest or other management decisions, and help identify habitats or life history stages that might be especially effective to protect or restore
Compensatory growth and TGP data from experiments conducted on juvenile Cyprinodon variegatus that were wild caught in the Atlantic during 2014
Dataset: Compensatory growth and TGPCompensatory growth and TGP data from experiments conducted on juvenile Cyprinodon variegatus that were wild caught in the Atlantic during 2014.
For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/709707NSF Division of Ocean Sciences (NSF OCE) OCE-113048
Cyprinodon variegatus offspring growth rate in grandparantal experiments from specimens wild caught in the Atlantic during 2014
Dataset: Grandparental effectsCyprinodon variegatus offspring growth rate in grandparantal experiments from specimens wild caught in the Atlantic during 2014.
For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/709762NSF Division of Ocean Sciences (NSF OCE) OCE-113048
Cyprinodon variegatus offspring growth rate from parental contribution experiments conducted on wild caught Atlantic specimens during 2014.
Dataset: Parental contributionCyprinodon variegatus offspring growth rate from parental contribution experiments conducted on wild caught Atlantic specimens during 2014.
For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/709815NSF Division of Ocean Sciences (NSF OCE) OCE-113048