103 research outputs found

    Aerosol Particle Formation : Meteorological and Synoptic Processes behind the Event

    Get PDF
    Aerosol particles in the atmosphere are known to significantly influence ecosystems, to change air quality and to exert negative health effects. Atmospheric aerosols influence climate through cooling of the atmosphere and the underlying surface by scattering of sunlight, through warming of the atmosphere by absorbing sun light and thermal radiation emitted by the Earth surface and through their acting as cloud condensation nuclei. Aerosols are emitted from both natural and anthropogenic sources. Depending on their size, they can be transported over significant distances, while undergoing considerable changes in their composition and physical properties. Their lifetime in the atmosphere varies from a few hours to a week. New particle formation is a result of gas-to-particle conversion. Once formed, atmospheric aerosol particles may grow due to condensation or coagulation, or be removed by deposition processes. In this thesis we describe analyses of air masses, meteorological parameters and synoptic situations to reveal conditions favourable for new particle formation in the atmosphere. We studied the concentration of ultrafine particles in different types of air masses, and the role of atmospheric fronts and cloudiness in the formation of atmospheric aerosol particles. The dominant role of Arctic and Polar air masses causing new particle formation was clearly observed at Hyytiälä, Southern Finland, during all seasons, as well as at other measurement stations in Scandinavia. In all seasons and on multi-year average, Arctic and North Atlantic areas were the sources of nucleation mode particles. In contrast, concentrations of accumulation mode particles and condensation sink values in Hyytiälä were highest in continental air masses, arriving at Hyytiälä from Eastern Europe and Central Russia. The most favourable situation for new particle formation during all seasons was cold air advection after cold-front passages. Such a period could last a few days until the next front reached Hyytiälä. The frequency of aerosol particle formation relates to the frequency of low-cloud-amount days in Hyytiälä. Cloudiness of less than 5 octas is one of the factors favouring new particle formation. Cloudiness above 4 octas appears to be an important factor that prevents particle growth, due to the decrease of solar radiation, which is one of the important meteorological parameters in atmospheric particle formation and growth. Keywords: Atmospheric aerosols, particle formation, air mass, atmospheric front, cloudines

    Relation of air mass history to nucleation events in Po Valley, Italy, using back trajectories analysis

    Get PDF
    International audienceIn this paper, we study the transport of air masses to San Pietro Capofiume (SPC) in Po Valley, Italy, by means of back trajectories analysis. Our main aim is to investigate whether air masses originate over different regions on nucleation event days and on nonevent days, during three years when nucleation events have been continuously recorded at SPC. The results indicate that nucleation events occur frequently in air masses arriving from Central Europe, whereas event frequency is much lower in the air transported from southern directions and from the Atlantic Ocean. We also analyzed the behaviour of meteorological parameters during 96 h transport to SPC, and found that, on average, event trajectories undergo stronger subsidence during the last 12 h before the arrival at SPC than nonevent trajectories. This causes a reversal in the temperature and relative humidity (RH) differences between event and nonevent trajectories: between 96 and 12 h back time, temperature is lower and RH is higher for event than nonevent trajectories and between 12 and 0 h vice versa. Boundary layer mixing is stronger along the event trajectories compared to nonevent trajectories. The absolute humidity (AH) is similar for the event and nonevent trajectories between about 96 h and about 60 h back time, but after that, the event trajectories AH becomes lower due to stronger rain. We also studied transport of SO2 to SPC, and conclude that although sources in Po Valley most probably dominate the measured concentrations, certain Central and Eastern European sources also make a substantial contribution

    Estimates of the aerosol indirect effect over the Baltic Sea region derived from 12 years of MODIS observations

    Get PDF
    Retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board the Aqua satellite, 12 years (2003-2014) of aerosol and cloud properties were used to statistically quantify aerosol-cloud interaction (ACI) over the Baltic Sea region, including the relatively clean Fennoscandia and the more polluted central-eastern Europe. These areas allowed us to study the effects of different aerosol types and concentrations on macro-and microphysical properties of clouds: cloud effective radius (CER), cloud fraction (CF), cloud optical thickness (COT), cloud liquid water path (LWP) and cloud-top height (CTH). Aerosol properties used are aerosol optical depth (AOD), Angstrom exponent (AE) and aerosol index (AI). The study was limited to low-level water clouds in the summer. The vertical distributions of the relationships between cloud properties and aerosols show an effect of aerosols on low-level water clouds. CF, COT, LWP and CTH tend to increase with aerosol loading, indicating changes in the cloud structure, while the effective radius of cloud droplets decreases. The ACI is larger at relatively low cloud-top levels, between 900 and 700 hPa. Most of the studied cloud variables were unaffected by the lower-tropospheric stability (LTS), except for the cloud fraction. The spatial distribution of aerosol and cloud parameters and ACI, here defined as the change in CER as a function of aerosol concentration for a fixed LWP, shows positive and statistically significant ACI over the Baltic Sea and Fennoscandia, with the former having the largest values. Small negative ACI values are observed in central-eastern Europe, suggesting that large aerosol concentrations saturate the ACI.Peer reviewe

    Characterization of Urban New Particle Formation in Amman—Jordan

    Get PDF
    We characterized new particle formation (NPF) events in the urban background of Amman during August 2016–July 2017. The monthly mean of submicron particle number concentration was 1.2 × 104–3.7 × 104 cm−3 (exhibited seasonal, weekly, and diurnal variation). Nucleation mode (10–15 nm) concentration was 0.7 × 103–1.1 × 103 cm−3 during daytime with a sharp peak (1.1 × 103–1.8 × 103 cm−3) around noon. We identified 110 NPF events (≈34% of all days) of which 55 showed a decreasing mode diameter after growth. The NPF event occurrence was higher in summer than in winter, and events were accompanied with air mass back trajectories crossing over the Eastern Mediterranean. The mean nucleation rate (J10) was 1.9 ± 1.1 cm−3 s−1 (monthly mean 1.6–2.7 cm−3 s−1) and the mean growth rate was 6.8 ± 3.1 nm/h (4.1–8.8 nm/h). The formation rate did not have a seasonal pattern, but the growth rate had a seasonal variation (maximum around August and minimum in winter). The mean condensable vapor source rate was 4.1 ± 2.2 × 105 molecules/cm3 s (2.6–6.9 × 105 molecules/cm3 s) with a seasonal pattern (maximum around August). The mean condensation sink was 8.9 ± 3.3 × 10−3 s−1 (6.4–14.8 × 10−3 s−1) with a seasonal pattern (minimum around June and maximum in winter)

    Quantifying uncertainty in satellite-retrieved land surface temperature from cloud detection errors

    Get PDF
    Clouds remain one of the largest sources of uncertainty in remote sensing of surface temperature in the infrared, but this uncertainty has not generally been quantified. We present a new approach to do so, applied here to the Advanced Along-Track Scanning Radiometer (AATSR). We use an ensemble of cloud masks based on independent methodologies to investigate the magnitude of cloud detection uncertainties in area-average Land Surface Temperature (LST) retrieval. We find that at a grid resolution of 625 km^2 (commensurate with 0.25 degrees grid size at the tropics), cloud detection uncertainties are positively correlated with cloud-cover fraction in the cell, and are larger during the day than at night. Daytime cloud detection uncertainties range between 2.5 K for clear-sky fractions of 10-20 % and 1.03 K for clear-sky fractions of 90-100 %. Corresponding nighttime uncertainties are 1.6 K and 0.38 K respectively. Cloud detection uncertainty shows a weaker positive correlation with the number of biomes present within a grid cell, used as a measure of heterogeneity in the background against which the cloud detection must operate (eg. surface temperature, emissivity and reflectance). Uncertainty due to cloud detection errors is strongly dependent on the dominant land cover classification. We find cloud detection uncertainties of magnitude 1.95 K over permanent snow and ice, 1.2 K over open forest, 0.9-1 K over bare soils and 0.09 K over mosaic cropland, for a standardised clear-sky fraction of 74.2 %. As the uncertainties arising from cloud detection errors are of a significant magnitude for many surface types, and spatially heterogeneous where land classification varies rapidly, LST data producers are encouraged to quantify cloud-related uncertainties in gridded products

    Strategic partnerships as a modern form of business integration in industry

    Get PDF
    The article considers the role of strategic partnerships in the practice of integration interactions of industrial enterprises in the modern economic environment. The authors highlight the distinctive features of strategic partnerships from other forms of business integration. The paper ascertains that for industrial enterprises, strategic partnerships based on the mechanism of subcontracting are most applicable. The study develops a model of strategic partnership based on subcontracting. The article gives practical examples of creating strategic partnerships. The paper analyses the level of development of strategic partnerships in industry, as well as studies the infrastructure that provides this process. The authors focus on the problems that hinder the activation of the processes of creating strategic partnerships based on subcontracting in the regions. Based on the results of the article, the authors offer recommendations aimed at the successful implementation of the creation of strategic business partnerships in industry

    Post-processing to remove residual clouds from aerosol optical depth retrieved using the Advanced Along Track Scanning Radiometer

    Get PDF
    Cloud misclassification is a serious problem in the retrieval of aerosol optical depth (AOD), which might considerably bias the AOD results. On the one hand, residual cloud contamination leads to AOD overestimation, whereas the removal of high-AOD pixels (due to their misclassification as clouds) leads to underestimation. To remove cloudcontaminated areas in AOD retrieved from reflectances measured with the (Advanced) Along Track Scanning Radiometers (ATSR-2 and AATSR), using the ATSR dual-view algorithm (ADV) over land or the ATSR single-view algorithm (ASV) over ocean, a cloud post-processing (CPP) scheme has been developed at the Finnish Meteorological Institute (FMI) as described in Kolmonen et al. (2016). The application of this scheme results in the removal of cloudcontaminated areas, providing spatially smoother AOD maps and favourable comparison with AOD obtained from the ground-based reference measurements from the AERONET sun photometer network. However, closer inspection shows that the CPP also removes areas with elevated AOD not due to cloud contamination, as shown in this paper. We present an improved CPP scheme which better discriminates between cloud-free and cloud-contaminated areas. The CPP thresholds have been further evaluated and adjusted according to the findings. The thresholds for the detection of high-AOD regions (> 60% of the retrieved pixels should be high-AOD (> 0.6) pixels), and cloud contamination criteria for lowAOD regions have been accepted as the default for AOD global post-processing in the improved CPP. Retaining elevated AOD while effectively removing cloud-contaminated pixels affects the resulting global and regional mean AOD values as well as coverage. Effects of the CPP scheme on both spatial and temporal variation for the period 2002-2012 are discussed. With the improved CPP, the AOD coverage increases by 10-15% with respect to the existing scheme. The validation versus AERONET shows an improvement of the correlation coefficient from 0.84 to 0.86 for the global data set for the period 2002-2012. The global aggregated AOD over land for the period 2003-2011 is 0.163 with the improved CPP compared to 0.144 with the existing scheme. The aggregated AOD over ocean and globally (land and ocean together) is 0.164 with the improved CPP scheme (compared to 0.152 and 0.150 with the existing scheme, for ocean and globally respectively). Effects of the improved CPP scheme on the 10-year time series are illustrated and seasonal and temporal changes are discussed. The improved CPP method introduced here is applicable to other aerosol retrieval algorithms. However, the thresholds for detecting the high-AOD regions, which were developed for AATSR, might have to be adjusted to the actual features of the instruments.Peer reviewe

    Dynamics of aerosol, humidity, and clouds in air masses travelling over Fennoscandian boreal forests

    Get PDF
    Boreal forests cover vast areas of land in the high latitudes of the Northern Hemisphere, which are under amplified climate warming. The interactions between the forests and the atmosphere are known to generate a complex set of feedback processes. One feedback process, potentially producing a cooling effect, is associated with an increased reflectance of clouds due to aerosol-cloud interactions. Here, we investigate the effect that the boreal forest environment can have on cloud-related properties during the growing season. The site investigated was the SMEAR II station in Hyytiala, Finland. Air mass back trajectories were the basis of the analysis and were used to estimate the time each air mass had spent over land prior to its arrival at the station. This enabled tracking the changes occurring in originally marine air masses as they travelled across the forested land. Only air masses arriving from the northwestern sector were investigated, as these areas have a relatively uniform forest cover and relatively little anthropogenic interference. We connected the air mass analysis with comprehensive in situ and remote-sensing data sets covering up to 11 growing seasons. We found that the properties of air masses with short land transport times, thereby less influenced by the forest, differed from those exposed to the forest environment for a longer period. The fraction of air masses with cloud condensation nuclei concentrations (at 0.2 % supersaturation) above the median value of 180 cm(-3) of the analysed air masses increased from approximately 10 % to 80 % after 55 h of exposure to boreal forest, while the fraction of air masses with specific humidity above the median value of 5 g kg(-1) increased from roughly 25 % to 65 %. Signs of possible resulting changes in the cloud layer were also observed from satellite measurements. Lastly, precipitation frequency increased from the average of approximately 7 % to about 12 % after a threshold of 50 h of land transport. Most of the variables showed an increase with an increasing land transport time until approximately 50-55 h, after which a balance with little further variation seemed to have been reached. This appears to be the approximate timescale in which the forest-cloud interactions take effect and the air masses adjust to the local forest environment.Peer reviewe

    Changes in background aerosol composition in Finland during polluted and clean periods studied by TEM/EDX individual particle analysis

    Get PDF
    Aerosol samples were collected at a rural background site in southern Finland in May 2004 during pollution episode ( PM1 similar to 16 mu g m(-3), backward air mass trajectories from south-east), intermediate period (PM1 similar to 5 mu g m(-3), backtrajectories from north-east) and clean period (PM1 similar to 2 mu g m(-3), backtrajectories from northwest/ north). The elemental composition, morphology and mixing state of individual aerosol particles in three size fractions were studied using transmission electron microscopy (TEM) coupled with energy dispersive X-ray (EDX) microanalyses. The TEM/EDX results were complemented with the size-segregated bulk chemical measurements of selected ions and organic and elemental carbon. Many of the particles in PM0.2-1 and PM1-3.3 size fractions were strongly internally mixed with S, C and/or N. The major particle types in PM0.2-1 samples were 1) soot and 2) ( ammonium) sulphates and their mixtures with variable amounts of C, K, soot and/or other inclusions. Number proportions of those two particle groups in PM0.2-1 samples were 0 - 12% and 83 - 97%, respectively. During the pollution episode, the proportion of Ca-rich particles was very high ( 26 - 48%) in the PM1- 3.3 and PM3.3-11 samples, while the PM0.2-1 and PM1- 3.3 samples contained elevated proportions of silicates ( 22 - 33%), metal oxides/hydroxides ( 1 - 9%) and tar balls ( 1 - 4%). These aerosols originated mainly from polluted areas of Eastern Europe, and some open biomass burning smoke was also brought by long-range transport. During the clean period, when air masses arrived from the Arctic Ocean, PM1- 3.3 samples contained mainly sea salt particles ( 67 - 89%) with a variable rate of Cl substitution ( mainly by NO3-). During the intermediate period, the PM1- 3.3 sample contained porous (sponge-like) Na-rich particles (35%) with abundant S, K and O. They might originate from the burning of wood pulp wastes of paper industry. The proportion of biological particles and C-rich fragments ( probably also biological origin) were highest in the PM3.3-11 samples ( 0 - 81% and 0 - 22%, respectively). The origin of different particle types and the effect of aging processes on particle composition and their hygroscopic and optical properties are discussed.Aerosol samples were collected at a rural background site in southern Finland in May 2004 during pollution episode ( PM1 similar to 16 mu g m(-3), backward air mass trajectories from south-east), intermediate period (PM1 similar to 5 mu g m(-3), backtrajectories from north-east) and clean period (PM1 similar to 2 mu g m(-3), backtrajectories from northwest/ north). The elemental composition, morphology and mixing state of individual aerosol particles in three size fractions were studied using transmission electron microscopy (TEM) coupled with energy dispersive X-ray (EDX) microanalyses. The TEM/EDX results were complemented with the size-segregated bulk chemical measurements of selected ions and organic and elemental carbon. Many of the particles in PM0.2-1 and PM1-3.3 size fractions were strongly internally mixed with S, C and/or N. The major particle types in PM0.2-1 samples were 1) soot and 2) ( ammonium) sulphates and their mixtures with variable amounts of C, K, soot and/or other inclusions. Number proportions of those two particle groups in PM0.2-1 samples were 0 - 12% and 83 - 97%, respectively. During the pollution episode, the proportion of Ca-rich particles was very high ( 26 - 48%) in the PM1- 3.3 and PM3.3-11 samples, while the PM0.2-1 and PM1- 3.3 samples contained elevated proportions of silicates ( 22 - 33%), metal oxides/hydroxides ( 1 - 9%) and tar balls ( 1 - 4%). These aerosols originated mainly from polluted areas of Eastern Europe, and some open biomass burning smoke was also brought by long-range transport. During the clean period, when air masses arrived from the Arctic Ocean, PM1- 3.3 samples contained mainly sea salt particles ( 67 - 89%) with a variable rate of Cl substitution ( mainly by NO3-). During the intermediate period, the PM1- 3.3 sample contained porous (sponge-like) Na-rich particles (35%) with abundant S, K and O. They might originate from the burning of wood pulp wastes of paper industry. The proportion of biological particles and C-rich fragments ( probably also biological origin) were highest in the PM3.3-11 samples ( 0 - 81% and 0 - 22%, respectively). The origin of different particle types and the effect of aging processes on particle composition and their hygroscopic and optical properties are discussed.Aerosol samples were collected at a rural background site in southern Finland in May 2004 during pollution episode ( PM1 similar to 16 mu g m(-3), backward air mass trajectories from south-east), intermediate period (PM1 similar to 5 mu g m(-3), backtrajectories from north-east) and clean period (PM1 similar to 2 mu g m(-3), backtrajectories from northwest/ north). The elemental composition, morphology and mixing state of individual aerosol particles in three size fractions were studied using transmission electron microscopy (TEM) coupled with energy dispersive X-ray (EDX) microanalyses. The TEM/EDX results were complemented with the size-segregated bulk chemical measurements of selected ions and organic and elemental carbon. Many of the particles in PM0.2-1 and PM1-3.3 size fractions were strongly internally mixed with S, C and/or N. The major particle types in PM0.2-1 samples were 1) soot and 2) ( ammonium) sulphates and their mixtures with variable amounts of C, K, soot and/or other inclusions. Number proportions of those two particle groups in PM0.2-1 samples were 0 - 12% and 83 - 97%, respectively. During the pollution episode, the proportion of Ca-rich particles was very high ( 26 - 48%) in the PM1- 3.3 and PM3.3-11 samples, while the PM0.2-1 and PM1- 3.3 samples contained elevated proportions of silicates ( 22 - 33%), metal oxides/hydroxides ( 1 - 9%) and tar balls ( 1 - 4%). These aerosols originated mainly from polluted areas of Eastern Europe, and some open biomass burning smoke was also brought by long-range transport. During the clean period, when air masses arrived from the Arctic Ocean, PM1- 3.3 samples contained mainly sea salt particles ( 67 - 89%) with a variable rate of Cl substitution ( mainly by NO3-). During the intermediate period, the PM1- 3.3 sample contained porous (sponge-like) Na-rich particles (35%) with abundant S, K and O. They might originate from the burning of wood pulp wastes of paper industry. The proportion of biological particles and C-rich fragments ( probably also biological origin) were highest in the PM3.3-11 samples ( 0 - 81% and 0 - 22%, respectively). The origin of different particle types and the effect of aging processes on particle composition and their hygroscopic and optical properties are discussed.Peer reviewe

    Modernization of the Sphere of Tourist and Hospitality Industry of the South of Russia as a Growth Factor of Socio-economic Stability of the Region

    Get PDF
    The article presents the results of a study on the development of the service sector business management modernization concepts in the form of real practical measures in general and in relation to the corporate planning, programming, design their development. An algorithm for implementation of adaptive management as a priority the modernization tool in this area. Our study was based on the assumption that the management of the modernization and maintenance of technology in enterprises of hotel services will allow to fully realize the goals of the strategic stability of the enterprises of sphere of services, will contribute to the attainment of a new quality of development, to mobilize potentially available resources in the field of hospitality and the involvement in it of effective market mechanisms, convincingly proved that the modernization of the service sector – the update of the existing forms and methods of management, the implementation of new features companies within predictable limits. Under the modernization tools flexible management system now should be understood a process-functional management system to ensure the achievement of targets in different periods of organizational development of the company, without degradation of the resource potential, by adapting to the changing conditions of the hotel business. Keywords: tourism economics, modernization tools, flexible management, services JEL Classifications: L83, M11, Z3
    • …
    corecore