44 research outputs found

    Research objectives to fill knowledge gaps in African swine fever virus survival in the environment and carcasses, which could improve the control of African swine fever virus in wild boar populations

    Get PDF
    The European Commission requested that EFSA provide study designs for the investigation of four research domains according to major gaps in knowledge identified by EFSA in a report published in 2019: i) the patterns of seasonality of African Swine Fever (ASF) in wild boar and domestic pigs in the EU; ii) the epidemiology of ASF in wild boar; iii) survival of ASF virus (ASFV) in the environment and iv) transmission of ASFV by vectors. In this Scientific Opinion, the third research domain on ASFV survival is addressed. Nine research objectives were proposed by the working group and broader ASF expert networks, such as ASF stop, ENETWILD, VectorNet, AHAW network and the AHAW Panel Experts. Of the nine research objectives, only one was prioritised and elaborated into a general protocol/study design research proposal, pertaining ASFV survival in feed and bedding. To investigate the survival of ASFV in feed, bedding and roughage, laboratory survival studies are proposed. To investigate possible risk mitigation measures, proof-of-concept approaches should be investigated.info:eu-repo/semantics/publishedVersio

    Research priorities to fill knowledge gaps on ASF seasonality that could improve the control of ASF

    Get PDF
    The European Commission requested EFSA to provide study designs for the investigation of four research domains according to major gaps in knowledge identified by EFSA in a report published in 2019: i) the patterns of seasonality of ASF in wild boar and domestic pigs in the EU; ii) the ASF epidemiology in wild boar; iii) ASF virus (ASFV) survival in the environment and iv) ASF transmission by vectors. In this Scientific Opinion, the first research domain on ASF seasonality is addressed. Therefore, five research objectives were proposed by the working group and broader ASF expert networks, such as ASF stop, ENETWILD, VectorNet, AHAW network and the AHAW Panel Experts. Of the five research objectives, only two were prioritised and elaborated into a general protocol/study design research proposal, namely: 1) to monitor the herd incidence of ASF outbreaks in EU Member States (MS) and 2) to investigate potential (seasonal) risk factors for ASF incursion in domestic pig herds of different herd types and/or size. To monitor the incidence in different pig herd types, it is advised to collect, besides ASF surveillance data, pig population data describing at least the following parameters per farm from the first moment of incursion in an affected MS: the numbers of pigs (e.g. number of breeding pigs sows and boars, weaners and fatteners) and the location and the type of farm (including details on the level of biosecurity implemented on the farm and the outdoor/indoor production). We suggest collecting data from all ASF‐affected MS through the SIGMA data model, which was developed for this purpose. To investigate potential risk factors for ASF incursion in domestic pig herds, we suggest a matched case–control design. Such a study design can be run either retrospectively or prospectively. The collected data on the pig herds and the ASF surveillance data in the SIGMA data model can be used to identify case and control farms.info:eu-repo/semantics/publishedVersio

    Research priorities to fill knowledge gaps in the control of African swine fever: possible transmission of African swine fever virus by vectors

    Get PDF
    The European Commission requested that EFSA provide study designs for the investigation of four research domains according to major gaps in knowledge identified by EFSA in a report published in 2019: (i) the patterns of seasonality of African Swine Fever (ASF) in wild boar and domestic pigs in the EU; (ii) the epidemiology of ASF in wild boar; (iii) survival of ASF virus (ASFV) in the environment and (iv) transmission of ASFV by vectors. In this Scientific Opinion, the fourth research domain on ASFV transmission by vectors is addressed. Eleven research objectives were proposed by the EFSA working group and broader ASF expert networks, such as ASF stop, ENETWILD, VectorNet, AHAW network and the AHAW Panel Experts. Of the 11 research objectives, six were prioritised based on the following set of criteria: (1) the impact on ASF management; (2) the feasibility or practicality to carry out the study; (3) the potential implementation of study results in practice; (4) a possible short time-frame study (< 1 year); (5) the novelty of the study and (6) if it was a priority for risk managers. The prioritised research objectives were: (I) Studies on the potential vector fauna at the pig–wild boar interface and the feeding preference of blood-feeding potential vectors in ASF-affected areas; (II) Assessment of the efficacy of insect screens on indoor/outdoor pig holdings to prevent the entry of blood-sucking vectors (i.e. Stomoxys) in ASF endemic areas; (III) Assess the role of mechanical vectors in the virus transmission in ASF-affected areas; (IV) Distribution of the potential mechanical transmission vectors in ASF-affected areas of the EU; (V) ASFV transmission by synanthropic birds; and (VI) Assessment on the presence/absence of the soft tick Ornithodoros erraticus in ASF-affected areas in Europe. For each of the selected research objectives, a research protocol has been proposed considering the potential impact on ASF management and the period of 1 year for the research activities.info:eu-repo/semantics/publishedVersio

    Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429):infectious bovine rhinotracheitis (IBR)

    Get PDF
    Abstract Infectious bovine rhinotracheitis (IBR) has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of IBR to be listed, Article 9 for the categorisation of IBR according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to IBR. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, IBR can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL. The disease would comply with the criteria in Sections 4 and 5 of Annex IV of the AHL, for the application of the disease prevention and control rules referred to in points (d) and (e) of Article 9(1). The assessment here performed on compliance with the criteria as in Section 3 of Annex IV referred to in point (c) of Article 9(1) is inconclusive. The animal species to be listed for IBR according to Article 8(3) criteria belong to the order Artiodactyla

    Research priorities to fill knowledge gaps in wild boar management measures that could improve the control of African swine fever in wild boar populations

    Get PDF
    The European Commission asked EFSA to provide study designs for the investigation of four research domains (RDs) according to major gaps in knowledge identified by EFSA in a report published in 2019: (RD 1) African swine fever (ASF) epidemiology in wild boar; (RD 2) ASF transmission by vectors; (RD 3) African swine fever virus (ASFV) survival in the environment, and (RD 4) the patterns of seasonality of ASF in wild boar and domestic pigs in the EU. In this Scientific Opinion, the second RD on ASF epidemiology in wild boar is addressed. Twenty-nine research objectives were proposed by the working group and broader ASF expert networks and 23 of these research objectives met a prespecified inclusion criterion. Fourteen of these 23 research objectives met the predefined threshold for selection and so were prioritised based on the following set of criteria: (1) the impact on ASF management; (2) the feasibility or practicality to carry out the study; (3) the potential implementation of study results in practice; (4) a possible short time-frame study (< 1 year); (5) the novelty of the study; and (6) if it was a priority for risk managers. Finally, after further elimination of three of the proposed research objectives due to overlapping scope of studies published during the development of this opinion, 11 research priorities were elaborated into short research proposals, considering the potential impact on ASF management and the period of one year for the research activities.info:eu-repo/semantics/publishedVersio
    corecore