10 research outputs found

    Extracellular pH, osmolarity, temperature and humidity could discourage SARS-CoV-2 cell docking and propagation via intercellular signaling pathways

    Get PDF
    open9sì: The COVID-19 pandemic and its virus variants continue to pose a serious and long-lasting threat worldwide. To combat the pandemic, the world's largest COVID-19 vaccination campaign is currently ongoing. As of July 19th 2021, 26.2% of the world population has received at least one dose of a COVID-19 vaccine (1.04 billion), and one billion has been fully vaccinated, with very high vaccination rates in countries like Israel, Malta, and the UEA. Conversely, only 1% of people in low-income countries have received at least one dose with examples of vaccination frequency as low as 0.07% in the Democratic Republic of Congo. It is thus of paramount importance that more research on alternate methods to counter cell infection and propagation is undertaken that could be implemented in low-income countries. Moreover, an adjunctive therapeutic intervention would help to avoid disease exacerbation in high-rate vaccinated countries too. Based on experimental biochemical evidence on viral cell fusion and propagation, herein we identify (i) extracellular pH (epH), (ii) temperature, and (iii) humidity and osmolarity as critical factors. These factors are here in discussed along with their implications on mucus thick layer, proteases, abundance of sialic acid, vascular permeability and exudate/edema. Heated, humidified air containing sodium bicarbonate has long been used in the treatment of certain diseases, and here we argue that warm inhalation of sodium bicarbonate might successfully target these endpoints. Although we highlight the molecular/cellular basis and the signalling pathways to support this intervention, we underscore the need for clinical investigations to encourage further research and clinical trials. In addition, we think that such an approach is also important in light of the high mutation rate of this virus originating from a rapid increase.openCicconetti, Franco; Sestili, Piero; Madiai, Valeria; Albertini, Maria Cristina; Campanella, Luigi; Coppari, Sofia; Fraternale, Daniele; Saunders, Bryan; Teodori, LauraCicconetti, Franco; Sestili, Piero; Madiai, Valeria; Albertini, Maria Cristina; Campanella, Luigi; Coppari, Sofia; Fraternale, Daniele; Saunders, Bryan; Teodori, Laur

    Curcumin, Polydatin and Quercetin Synergistic Activity Protects from High-Glucose-Induced Inflammation and Oxidative Stress

    Get PDF
    none10noChronic hyperglycemia, the diagnostic biomarker of Type 2 Diabetes Mellitus (T2DM), is a condition that fosters oxidative stress and proinflammatory signals, both involved in the promotion of cellular senescence. Senescent cells acquire a proinflammatory secretory phenotype, called SASP, exacerbating and perpetuating the detrimental effects of hyperglycemia. Bioactive compounds can exert antioxidant and anti-inflammatory properties. However, the synergistic anti-inflammatory and antioxidant effects of the most extensively investigated natural compounds have not been confirmed yet in senescent cells and in hyperglycemic conditions. Here, we exposed young and replicative senescent HUVEC (yHUVEC and sHUVEC) to a high-glucose (HG) condition (45 mM) and treated them with Polydatin (POL), Curcumin (CUR) and Quercetin (QRC), alone or in combination (MIX), to mirror the anti-inflammatory component OxiDefTM contained in the novel nutraceutical GlicefenTM (Mivell, Italy). In both yHUVEC and sHUVEC, the MIX significantly decreased the expression levels of inflammatory markers, such as MCP-1, IL-1β and IL-8, and ROS production. Importantly, in sHUVEC, a synergistic effect of the MIX was observed, suggesting its senomorphic activity. Moreover, the MIX was able to reduce the expression level of RAGE, a receptor involved in the activation of proinflammatory signaling. Overall, our data suggest that the consumption of nutraceuticals containing different natural compounds could be an adjuvant supplement to counteract proinflammatory and pro-oxidative signals induced by both hyperglycemic and senescence conditions.openMatacchione, Giulia; Valli, Debora; Silvestrini, Andrea; Giuliani, Angelica; Sabbatinelli, Jacopo; Giordani, Chiara; Coppari, Sofia; Rippo, Maria Rita; Albertini, Maria Cristina; Olivieri, FabiolaMatacchione, Giulia; Valli, Debora; Silvestrini, Andrea; Giuliani, Angelica; Sabbatinelli, Jacopo; Giordani, Chiara; Coppari, Sofia; Rippo, Maria Rita; Albertini, Maria Cristina; Olivieri, Fabiol

    Antioxidant and Anti-Inflammaging Ability of Prune (Prunus Spinosa L.) Extract Result in Improved Wound Healing Efficacy

    Get PDF
    none12sìPrunus spinosa L. fruit (PSF) ethanol extract, showing a peculiar content of biologically active molecules (polyphenols), was investigated for its wound healing capacity, a typical feature that declines during aging and is negatively affected by the persistence of inflammation and oxidative stress. To this aim, first, PSF anti-inflammatory properties were tested on young and senescent LPS-treated human umbilical vein endothelial cells (HUVECs). As a result, PSF treatment increased miR-146a and decreased IRAK-1 and IL-6 expression levels. In addition, the PSF antioxidant effect was validated in vitro with DPPH assay and confirmed by in vivo treatments in C. elegans. Our findings showed beneficial effects on worms’ lifespan and healthspan with positive outcomes on longevity markers (i.e., miR-124 upregulation and miR-39 downregulation) as well. The PSF effect on wound healing was tested using the same cells and experimental conditions employed to investigate PSF antioxidant and anti-inflammaging ability. PSF treatment resulted in a significant improvement of wound healing closure (ca. 70%), through cell migration, both in young and older cells, associated to a downregulation of inflammation markers. In conclusion, PSF extract antioxidant and antiinflammaging abilities result in improved wound healing capacity, thus suggesting that PSF might be helpful to improve the quality of life for its beneficial health effects.openSofia Coppari, Mariastella Colomba, Daniele Fraternale, Vanessa Brinkmann, Margherita Romeo, Marco Bruno Luigi Rocchi, Barbara Di Giacomo, Michele Mari, Loretta Guidi, Seeram Ramakrishna, Natascia Ventura, Maria Cristina AlbertiniCoppari, Sofia; Colomba, Mariastella; Fraternale, Daniele; Brinkmann, Vanessa; Romeo, Margherita; Rocchi, MARCO BRUNO LUIGI; DI GIACOMO, Barbara; Mari, Michele; Guidi, Loretta; Ramakrishna, Seeram; Ventura, Natascia; Albertini, MARIA CRISTIN

    Prunus spinosa Extract Loaded in Biomimetic Nanoparticles Evokes In Vitro Anti-Inflammatory and Wound Healing Activities

    Get PDF
    none14sìPrunus spinosa fruits (PSF) contain different phenolic compounds showing antioxidant and anti-inflammatory activities. Innovative drug delivery systems such as biomimetic nanoparticles could improve the activity of PSF extract by promoting (i) the protection of payload into the lipidic bilayer, (ii) increased accumulation to the diseased tissue due to specific targeting properties, (iii) improved biocompatibility, (iv) low toxicity and increased bioavailability. Using membrane proteins extracted from human monocyte cell line THP-1 cells and a mixture of phospholipids, we formulated two types of PSF-extract-loaded biomimetic vesicles differing from each other for the presence of either 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG). The biological activity of free extract (PSF), compared to both types of extract-loaded vesicles (PSF-DOPCs and PSF-DOPGs) and empty vesicles (DOPCs and DOPGs), was evaluated in vitro on HUVEC cells. PSF-DOPCs showed preferential incorporation of the extract. When enriched into the nanovesicles, the extract showed a significantly increased anti-inflammatory activity, and a pronounced wound-healing effect (with PSF-DOPCs more efficient than PSF-DOPG) compared to free PSF. This innovative drug delivery system, combining nutraceutical active ingredients into a biomimetic formulation, represents a possible adjuvant therapy for the treatment of wound healing. This nanoplatform could be useful for the encapsulation/enrichment of other nutraceutical products with short stability and low bioavailability.openTiboni, Mattia; Coppari, Sofia; Casettari, Luca; Guescini, Michele; Colomba, Mariastella; Fraternale, Daniele; Gorassini, Andrea; Verardo, Giancarlo; Ramakrishna, Seeram; Guidi, Loretta; Di Giacomo, Barbara; Mari, Michele; Molinaro, Roberto; Albertini, Maria CristinaTiboni, Mattia; Coppari, Sofia; Casettari, Luca; Guescini, Michele; Colomba, Mariastella; Fraternale, Daniele; Gorassini, Andrea; Verardo, Giancarlo; Ramakrishna, Seeram; Guidi, Loretta; Di Giacomo, Barbara; Mari, Michele; Molinaro, Roberto; Albertini, Maria Cristin

    Inflamm-aging microRNAs may integrate signals from food and gut microbiota by modulating common signalling pathways

    No full text
    Human gut microbiota, which comprises an extremely diverse and complex community of microorganisms inhabiting the intestinal tract, may be associated with inflammation and age-related chronic health conditions. However, the mechanism underlying this association is only recently beginning to emerge. Transfer and modulation of gene expression by diet-derived microRNAs (miRs) in mammals might be involved in this communication. Through a bioinformatics approach, using on line tools and repositories, we searched for evidences that food-containing miRs, actually involved in the modulation of the inflammatory process, (inflamma-miRs), may contribute to mediate the anti-inflammatory effects exerted by some foods through the modulation of aging-related pathways and gut microbiota composition in a bidirectional communication. Supported by a "Pubmed" search and our previous research, a trio of experimentally validated inflamma-miRs were considered: miR-155, miR-146a and miR-21. Our in silico study supports the hypothesis that these inflamma-miRs could modulate some pathways, such as lysine degradation and lengthening of fatty acids which are involved in the modulation of microbiota composition, i.e. prevotella, ruminococcus and oscillibacter and vice versa. Food homologues to human miR-21, miR-155 and miR-146a were found in cow fat, cow milk, and eggs suggesting that they may be able of targeting, and probably exacerbating, inflammation related pathways. If these data will be experimentally validated, they will further support the relevance of a nutraceutical approach for a healthy aging

    Chemical composition, antioxidant and anti-inflammatory properties of Monarda didyma L. essential oil

    No full text
    In the present study, Monarda didyma L. essential oil (isolated from the flowering aerial parts of the plant) was examined to characterize its chemotype and to evaluate, in addition to the quali-quantitative chemical analysis, the associated antioxidant and anti-inflammatory activities. The plants were grown in central Italy, Urbino (PU), Marche region. Different analyses (TLC, GC-FID, GC-MS and 1H-NMR) allowed the identification of twenty compounds among which carvacrol, p-cymene and thymol were the most abundant. On this basis, the chemotype examined in the present study was indicated as Monarda didyma ct. carvacrol. The antioxidant effect was assessed by DPPH assay. Moreover, this chemotype was investigated for the anti-inflammatory effect in an in vitro setting (i.e., LPS-stimulated U937 cells). The decreased expression of pro-inflammatory cytokine IL-6 and the increased expression of miR-146a are suggestive of the involvement of the Toll-like receptor-4 signaling pathway. Although further studies are needed to better investigate the action mechanism/s underlying the results observed in the experimental setting, our findings show that M. didyma essential oil is rich in bioactive compounds (mainly aromatic monoterpenes and phenolic monoterpenes) which are most likely responsible for its beneficial effect

    Nrf2-Mediated Pathway Activated by <i>Prunus spinosa</i> L. (Rosaceae) Fruit Extract: Bioinformatics Analyses and Experimental Validation

    Get PDF
    In our previous studies, Prunus spinosa fruit (PSF) ethanol extract was showed to exert antioxidant, antimicrobial, anti-inflammatory and wound healing activities. In the present study, an integrated bioinformatics analysis combined with experimental validation was carried out to investigate the biological mechanism(s) that are responsible for the reported PSF beneficial effects as an antioxidant during a pro-inflammatory TLR4 insult. Bioinformatics analysis using miRNet 2.0 was carried out to address which biological process(es) the extract could be involved in. In addition, Chemprop was employed to identify the key targets of nuclear receptor (NR) signaling and stress response (SR) pathways potentially modulated. The miRNet analysis suggested that the PSF extract mostly activates the biological process of cellular senescence. The Chemprop analysis predicted three possible targets for nine phytochemicals found in the extract: (i) ARE signaling, (ii) mitochondrial membrane potential (MMP) and (iii) p53 SR pathways. The PSF extract antioxidant effect was also experimentally validated in vitro using the human monocyte U937 cell line. Our findings showed that Nrf2 is modulated by the extract with a consequent reduction of the oxidative stress level. This was confirmed by a strong decrease in the amount of reactive oxygen species (ROS) observed in the PSF-treated cells subjected to lipopolysaccharide (LPS) (6 h treatment, 1 µg/mL). No visible effects were observed on p53 and MMP modulation

    Human-rat integrated microRNAs profiling identified a new neonatal cerebral hypoxic-ischemic pathway melatonin-sensitive

    Get PDF
    Neonatal encephalopathy (NE) is a pathological condition affecting long-term neurodevelopmental outcomes. Hypothermia is the only therapeutic option, but does not always improve outcomes; hence, researchers continue to hunt for pharmaceutical compounds. Melatonin treatment has benefitted neonates with hypoxic-ischemic (HI) brain injury. However, unlike animal models that enable the study of the brain and the pathophysiologic cascade, only blood is available from human subjects. Therefore, due to the unavailability of neonatal brain tissue, assumptions about the pathophysiology in pathways and cascades are made in human subjects with NE. We analyzed animal and human specimens to improve our understanding of the pathophysiology in human neonates. A neonate with NE who underwent hypothermia and enrolled in a melatonin pharmacokinetic study was compared to HI&nbsp;rats treated/untreated with melatonin. MicroRNA&nbsp;(miRNA) analyses provided profiles of the neonate's plasma, rat plasma, and rat brain cortexes. We compared these profiles through a bioinformatics tool, identifying Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways common to HI&nbsp;brain injury and melatonin treatment. After evaluating the resulting pathways and the literature, to validate the method, the key proteins expressed in HI&nbsp;brain injury were investigated using cerebral cortexes. The upregulated miRNAs in human neonate and rat plasma helped identify two KEGG pathways, glioma and long-term potentiation, common to HI&nbsp;injury and melatonin treatment. A unified neonatal cerebral melatonin-sensitive HI pathway&nbsp;was designed and validated by assessing the expression of protein kinase Cα&nbsp;(PKCα), phospho (p)-Akt, and p-ERK proteins in rat brain cortexes. PKCα increased in HI-injured rats and further increased with melatonin. p-Akt and p-ERK returned phosphorylated to their basal level with melatonin treatment after HI&nbsp;injury. The bioinformatics analyses validated by key protein expression identified pathways common to HI&nbsp;brain injury and melatonin treatment. This approach helped complete pathways in neonates with NE by integrating information from animal models of HI brain injury
    corecore