6 research outputs found

    Microsatellites’ mutation modeling through the analysis of the Y-chromosomal transmission: Results of a GHEP-ISFG collaborative study

    Get PDF
    The Spanish and Portuguese Speaking Working Group of the International Society for Forensic Genetics (GHEP-ISFG) organized a collaborative study on mutations of Y-chromosomal short tandem repeats (Y-STRs). New data from 2225 father-son duos and data from 44 previously published reports, corresponding to 25,729 duos, were collected and analyzed. Marker-specific mutation rates were estimated for 33 Y-STRs. Although highly dependent on the analyzed marker, mutations compatible with the gain or loss of a single repeat were 23.2 times more likely than those involving a greater number of repeats. Longer alleles (relatively to the modal one) showed to be nearly twice more mutable than the shorter ones. Within the subset of longer alleles, the loss of repeats showed to be nearly twice more likely than the gain. Conversely, shorter alleles showed a symmetrical trend, with repeat gains being twofold more frequent than reductions. A positive correlation between the paternal age and the mutation rate was observed, strengthening previous findings. The results of a machine learning approach, via logistic regression analyses, allowed the establishment of algebraic formulas for estimating the probability of mutation depending on paternal age and allele length for DYS389I, DYS393 and DYS627. Algebraic formulas could also be established considering only the allele length as predictor for DYS19, DYS389I, DYS389II-I, DYS390, DYS391, DYS393, DYS437, DYS439, DYS449, DYS456, DYS458, DYS460, DYS481, DYS518, DYS533, DYS576, DYS626 and DYS627 loci. For the remaining Y-STRs, a lack of statistical significance was observed, probably as a consequence of the small effective size of the subsets available, a common difficulty in the modeling of rare events as is the case of mutations. The amount of data used in the different analyses varied widely, depending on how the data were reported in the publications analyzed. This shows a regrettable waste of produced data, due to inadequate communication of the results, supporting an urgent need of publication guidelines for mutation studies.info:eu-repo/semantics/publishedVersio

    Prioritization of Variants Detected by Next Generation Sequencing According to the Mutation Tolerance and Mutational Architecture of the Corresponding Genes

    No full text
    The biggest challenge geneticists face when applying next-generation sequencing technology to the diagnosis of rare diseases is determining which rare variants, from the dozens or hundreds detected, are potentially implicated in the patient’s phenotype. Thus, variant prioritization is an essential step in the process of rare disease diagnosis. In addition to conducting the usual in-silico analyses to predict variant pathogenicity (based on nucleotide/amino-acid conservation and the differences between the physicochemical features of the amino-acid change), three important concepts should be borne in mind. The first is the “mutation tolerance” of the genes in which variants are located. This describes the susceptibility of a given gene to any functional mutation and depends on the strength of purifying selection acting against it. The second is the “mutational architecture” of each gene. This describes the type and location of mutations previously identified in the gene, and their association with different phenotypes or degrees of severity. The third is the mode of inheritance (inherited vs. de novo) of the variants detected. Here, we discuss the importance of each of these concepts for variant prioritization in the diagnosis of rare diseases. Using real data, we show how genes, rather than variants, can be prioritized by calculating a gene-specific mutation tolerance score. We also illustrate the influence of mutational architecture on variant prioritization using five paradigmatic examples. Finally, we discuss the importance of familial variant analysis as final step in variant prioritization

    Proteomics in Inherited Metabolic Disorders

    No full text
    Inherited metabolic disorders (IMD) are rare medical conditions caused by genetic defects that interfere with the body’s metabolism. The clinical phenotype is highly variable and can present at any age, although it more often manifests in childhood. The number of treatable IMDs has increased in recent years, making early diagnosis and a better understanding of the natural history of the disease more important than ever. In this review, we discuss the main challenges faced in applying proteomics to the study of IMDs, and the key advances achieved in this field using tandem mass spectrometry (MS/MS). This technology enables the analysis of large numbers of proteins in different body fluids (serum, plasma, urine, saliva, tears) with a single analysis of each sample, and can even be applied to dried samples. MS/MS has thus emerged as the tool of choice for proteome characterization and has provided new insights into many diseases and biological systems. In the last 10 years, sequential window acquisition of all theoretical fragmentation spectra mass spectrometry (SWATH-MS) has emerged as an accurate, high-resolution technique for the identification and quantification of proteins differentially expressed between healthy controls and IMD patients. Proteomics is a particularly promising approach to help obtain more information on rare genetic diseases, including identification of biomarkers to aid early diagnosis and better understanding of the underlying pathophysiology to guide the development of new therapies. Here, we summarize new and emerging proteomic technologies and discuss current uses and limitations of this approach to identify and quantify proteins. Moreover, we describe the use of proteomics to identify the mechanisms regulating complex IMD phenotypes; an area of research essential to better understand these rare disorders and many other human diseases

    Association of a Novel Homozygous Variant in <i>ABCA1</i> Gene with Tangier Disease

    No full text
    Tangier disease (TD) is a rare autosomal recessive disorder caused by a variant in the ABCA1 gene, characterized by significantly reduced levels of plasma high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-1 (ApoA-I). TD typically leads to accumulation of cholesterol in the peripheral tissues and early coronary disease but with highly variable clinical expression. Herein, we describe a case study of a 59-year-old male patient with features typical of TD, in whom a likely pathogenic variant in the ABCA1 gene was identified by whole-exome sequencing (WES), identified for the first time as homozygous (NM_005502.4: c.4799A>G (p. His1600Arg)). In silico analysis including MutationTaster and DANN score were used to predict the pathogenicity of the variant and a protein model generated by SWISS-MODEL was built to determine how the homozygous variant detected in our patient may change the protein structure and impact on its function. This case study describes a homozygous variant of the ABCA1 gene, which is responsible for a severe form of TD and underlines the importance of using bioinformatics and genomics for linking genotype to phenotype and better understanding and accounting for the functional impact of genetic variations

    Newborn screening for homocystinurias: recent recommendations versus current practice

    Get PDF
    Purpose: To assess how the current practice of newborn screening (NBS) for homocystinurias compares with published recommendations. Methods: Twenty-two of 32 NBS programmes from 18 countries screened for at least one form of homocystinuria. Centres provided pseudonymised NBS data from patients with cystathionine beta-synthase deficiency (CBSD, n = 19), methionine adenosyltransferase I/III deficiency (MATI/IIID, n = 28), combined remethylation disorder (cRMD, n = 56) and isolated remethylation disorder (iRMD), including methylenetetrahydrofolate reductase deficiency (MTHFRD) (n = 8). Markers and decision limits were converted to multiples of the median (MoM) to allow comparison between centres. Results: NBS programmes, algorithms and decision limits varied considerably. Only nine centres used the recommended second-tier marker total homocysteine (tHcy). The median decision limits of all centres were ≥ 2.35 for high and ≤ 0.44 MoM for low methionine, ≥ 1.95 for high and ≤ 0.47 MoM for low methionine/phenylalanine, ≥ 2.54 for high propionylcarnitine and ≥ 2.78 MoM for propionylcarnitine/acetylcarnitine. These decision limits alone had a 100%, 100%, 86% and 84% sensitivity for the detection of CBSD, MATI/IIID, iRMD and cRMD, respectively, but failed to detect six individuals with cRMD. To enhance sensitivity and decrease second-tier testing costs, we further adapted these decision limits using the data of 15 000 healthy newborns. Conclusions: Due to the favorable outcome of early treated patients, NBS for homocystinurias is recommended. To improve NBS, decision limits should be revised considering the population median. Relevant markers should be combined; use of the postanalytical tools offered by the CLIR project (Collaborative Laboratory Integrated Reports, which considers, for example, birth weight and gestational age) is recommended. tHcy and methylmalonic acid should be implemented as second-tier markers.Funding information: Mayo Clinic; Charles University; Ministry of Health of the Czech Republic Communicated by: Piero Rinaldoinfo:eu-repo/semantics/publishedVersio
    corecore