263 research outputs found

    Equation of State for physical quark masses

    Full text link
    We calculate the QCD equation of state for temperatures corresponding to the transition region with physical mass values for two degenerate light quark flavors and a strange quark using an improved staggered fermion action (p4-action) on lattices with temporal extent N_tau=8. We compare our results with previous calculations performed at twice larger values of the light quark masses as well as with results obtained from a resonance gas model calculation. We also discuss the deconfining and chiral aspects of the QCD transition in terms of renormalized Polyakov loop, strangeness fluctuations and subtracted chiral condensate. We show that compared to the calculations performed at twice larger value of the light quark mass the transition region shifts by about 5 MeV toward smaller temperaturesComment: 7 pages, LaTeX, 6 figures; minor corrections, typos corrected, references adde

    Towards Research Collaboration – a Taxonomy of Social Research Network Sites

    Get PDF
    The increase of scientific collaboration coincides with the technological and social advancement of social software applications which can change the way we research. Among social software, social network sites have recently gained immense popularity in a hedonic context. This paper focuses on social network sites as an emerging application designed for the specific needs of researchers. To give an overview about these sites we use a data set of 24 case studies and in-depth interviews with the founders of ten social research network sites. The gathered data leads to a first tentative taxonomy and to a definition of SRNS identifying four basic functionalities identity and network management, communication, information management, and collaboration. The sites in the sample correspond to one of the following four types: research directory sites, research awareness sites, research management sites and research collaboration sites. These results conclude with implications for providers of social research network sites

    Conserved Charge Fluctuations from Lattice QCD and the Beam Energy Scan

    Full text link
    We discuss the next-to-leading order Taylor expansion of ratios of cumulants of net-baryon number fluctuations. We focus on the relation between the skewness ratio, SBσB=χ3B/χ1BS_B\sigma_B = \chi_3^B/\chi_1^B, and the kurtosis ratio, κBσB2=χ4B/χ2B\kappa_B\sigma_B^2 =\chi_4^B/\chi_2^B. We show that differences in these two cumulant ratios are small for small values of the baryon chemical potential. The next-to-leading order correction to κBσB2\kappa_B\sigma_B^2 however is approximately three times larger than that for SBσBS_B\sigma_B. The former thus drops much more rapidly with increasing beam energy, sNN\sqrt{s_{NN}}. We argue that these generic patterns are consistent with current data on cumulants of net-proton number fluctuations measured by the STAR Collaboration at sNN19.6\sqrt{s_{NN}}\ge 19.6~GeV.Comment: 4 pages, 4 figures, contribution to the Quark Matter 2015 proceeding

    The Spatial String Tension and Dimensional Reduction in QCD

    Full text link
    We calculate the spatial string tension in (2+1) flavor QCD with physical strange quark mass and almost physical light quark masses using lattices with temporal extent N_tau=4,6 and 8. We compare our results on the spatial string tension with predictions of dimensionally reduced QCD. This suggests that also in the presence of light dynamical quarks dimensional reduction works well down to temperatures 1.5T_c.Comment: 8 pages ReVTeX, 4 figure

    Study of the finite temperature transition in 3-flavor QCD using the R and RHMC algorithms

    Get PDF
    We study the finite temperature transition in QCD with three flavors of equal masses using the R and RHMC algorithm on lattices with temporal extent N_{\tau}=4 and 6. For the transition temperature in the continuum limit we find r_0 T_c=0.429(8) for the light pseudo-scalar mass corresponding to the end point of the 1st order transition region. When comparing the results obtained with the R and RHMC algorithms for p4fat3 action we see no significant step-size errors down to a lightest pseudo-scalar mass of m_{ps} r_0=0.4.Comment: 13 pages, RevTeX, 10 figure

    The QCD Equation of State with almost Physical Quark Masses

    Full text link
    We present results on the equation of state in QCD with two light quark flavors and a heavier strange quark. Calculations with improved staggered fermions have been performed on lattices with temporal extent Nt =4 and 6 on a line of constant physics with almost physical quark mass values; the pion mass is about 220 MeV, and the strange quark mass is adjusted to its physical value. High statistics results on large lattices are obtained for bulk thermodynamic observables, i.e. pressure, energy and entropy density, at vanishing quark chemical potential for a wide range of temperatures, 140 MeV < T < 800 MeV. We present a detailed discussion of finite cut-off effects which become particularly significant for temperatures larger than about twice the transition temperature. At these high temperatures we also performed calculations of the trace anomaly on lattices with temporal extent Nt=8. Furthermore, we have performed an extensive analysis of zero temperature observables including the light and strange quark condensates and the static quark potential at zero temperature. These are used to set the temperature scale for thermodynamic observables and to calculate renormalized observables that are sensitive to deconfinement and chiral symmetry restoration and become order parameters in the infinite and zero quark mass limits, respectively.Comment: 22 pages, 17 EPS-figures; revised version, updated references, data added in Tab.1, several smaller change

    Equation of state and QCD transition at finite temperature

    Full text link
    We calculate the equation of state in 2+1 flavor QCD at finite temperature with physical strange quark mass and almost physical light quark masses using lattices with temporal extent Nt=8. Calculations have been performed with two different improved staggered fermion actions, the asqtad and p4 actions. Overall, we find good agreement between results obtained with these two O(a^2) improved staggered fermion discretization schemes. A comparison with earlier calculations on coarser lattices is performed to quantify systematic errors in current studies of the equation of state. We also present results for observables that are sensitive to deconfining and chiral aspects of the QCD transition on Nt=6 and 8 lattices. We find that deconfinement and chiral symmetry restoration happen in the same narrow temperature interval. In an Appendix we present a simple parametrization of the equation of state that can easily be used in hydrodynamic model calculations. In this parametrization we also incorporated an estimate of current uncertainties in the lattice calculations which arise from cutoff and quark mass effects. We estimate these systematic effects to be about 10 MeVComment: 31 pages, 24 EPS-figure

    Fluctuations and Correlations of net baryon number, electric charge, and strangeness: A comparison of lattice QCD results with the hadron resonance gas model

    Get PDF
    We calculate the quadratic fluctuations of net baryon number, electric charge and strangeness as well as correlations among these conserved charges in (2+1)-flavor lattice QCD at zero chemical potential. Results are obtained using calculations with tree level improved gauge and the highly improved staggered quark (HISQ) actions with almost physical light and strange quark masses at three different values of the lattice cut-off. Our choice of parameters corresponds to a value of 160 MeV for the lightest pseudo scalar Goldstone mass and a physical value of the kaon mass. The three diagonal charge susceptibilities and the correlations among conserved charges have been extrapolated to the continuum limit in the temperature interval 150 MeV <T < 250 MeV. We compare our results with the hadron resonance gas (HRG) model calculations and find agreement with HRG model results only for temperatures T<= 150 MeV. We observe significant deviations in the temperature range 160 MeV < T < 170 MeV and qualitative differences in the behavior of the three conserved charge sectors. At T < 160 MeV quadratic net baryon number fluctuations in QCD agree with HRG model calculations while, the net electric charge fluctuations in QCD are about 10% smaller and net strangeness fluctuations are about 20% larger. These findings are relevant to the discussion of freeze-out conditions in relativistic heavy ion collisions.Comment: 17 pages, 18 EPS-files, 5 tables, revised version includes continuum limit extrapolations of off-diagonal susceptibilities, to appear in Phys. Rev.
    corecore