9 research outputs found

    Phosphorylation of chemoattractant receptors is not essential for chemotaxis or termination of G-protein-mediated responses

    Get PDF
    In several G-protein-coupled signaling systems, ligand-induced receptor phosphorylation by specific kinases is suggested to lead to desensitization via mechanisms including receptor/G-protein uncoupling, receptor internalization, and receptor down-regulation. We report here that elimination of phosphorylation of a chemoattractant receptor of Dictyostelium, either by site-directed substitution of the serines or by truncation of the C-terminal cytoplasmic domain, completely prevented agonist-induced loss of ligand binding but did not impair the adaptation of several receptor-mediated responses including the activation of adenylyl and guanylyl cyclases and actin polymerization, In addition, the phosphorylation deficient receptors were capable of mediating chemotaxis, aggregation, and differentiation. We propose that for chemoattractant receptors agonist-induced phosphorylation regulates surface binding activity but other phosphorylation-independent mechanisms mediate response adaptation

    Extracellular cAMP can restore development in Dictyostelium cells lacking one, but not two subtypes of early cAMP receptors (cARs). Evidence for involvement of cAR1 in aggregative gene expression

    No full text
    Extracellular cAMP induces expression of several classes of developmentally regulated genes in Dictyostelium. Four highly homologous surface cAMP receptors (cARs) were identified earlier, but involvement of specific cARs in gene regulation has not been clarified. Cells lacking the chemotactic receptor, cAR1, neither aggregate nor express developmentally regulated genes. Expression of aggregative genes is in wild-type cells induced by nanomolar cAMP pulses and repressed by persistent micromolar cAMP stimuli, which induce expression of prespore and prestalk-enriched genes during the postaggregative stages of development. We show here that in cell lines carrying a cAR1 gene disruption, nanomolar pulses cannot induce aggregative gene expression. Remarkably, micromolar cAMP can induce expression of aggregative genes in car1- cells as well as expression of prespore and prestalk-enriched genes, and furthermore restores their ability to form normal slugs and fruiting bodies. These data indicate that cAR1 mediates aggregative but not postaggregative gene expression and morphogenesis, and suggest that after gene disruption, its function is partially taken over by a lower affinity receptor that is not subjected to desensitization. The absence of another early cAMP receptor, cAR3, does not affect development. However, in a car1-/car3- double mutant, cAMP stimulation cannot restore any developmental gene expression, indicating that cAR3 may have substituted for cAR1 in car1- cell lines

    Two cAMP receptors activate common signaling pathways in Dictyostelium

    Get PDF
    Multiple signal transduction pathways within a single cell may share common components. In particular, seven different transmembrane helix receptors may activate identical pathways by interacting with the same G-proteins. Dictyostelium cells respond to cAMP using one such receptor, cAR1, coupled by a typical heterotrimeric G-protein to intracellular effectors. However, cells in which the gene for cAR1 has been deleted are unexpectedly still able to respond to cAMP. This implies either that certain responses are mediated by a different receptor than cAR1, or alternatively that a second, partially redundant receptor shares some of the functions of cAR1. We have examined the dose response and ligand specificity of one response, cAMP relay, and the dose response of another, cyclic GMP synthesis. In each case, the EC50 was approximately 100-fold higher and the maximal response was smaller in car1- than wild-type cells. These data indicate that cAR1 normally mediates responses to cAMP. The ligand specificity suggests that the responses seen in car1- mutants are mediated by a second receptor, cAR3. To test this hypothesis, we constructed a cell line containing deletions of both cAR1 and cAR3 genes. As predicted, these lines are totally insensitive to cAMP. We conclude that the functions of the cAR1 and cAR3 receptors are partially redundant and that both interact with the same heterotrimeric G-protein to mediate these and other responses

    Cell-permeable Non-hydrolyzable cAMP Derivatives as Tools for Analysis of Signaling Pathways Controlling Gene Regulation in Dictyostelium

    Get PDF
    A novel class of cAMP derivatives were tested for binding to surface cAMP receptors (CAR), protein kinase A (PKA), and cAMP-phosphodiesterase (PDE) and for induction of three classes of cAMP regulated genes in Dictyostelium discoideum. These derivatives carry sulfur substitutions for either the axial (Sp) or equatorial (Rp) exocyclic oxygen atoms, while further modifications were introduced to provide specificity for binding to either CAR or PKA, and/or to increase lipophilicity and render the derivatives membrane-permeable. All derivatives bind weakly to PDE and are almost not degraded during incubation with Dictyostelium cells. One cAMP derivative, 6-thioethylpurineriboside 3',5‘-monophosphorothioate, Sp-isomer (Sp-6SEtcPuMPS), fulfills the criteria for selective activation of PKA in vivo. The compound enters Dictyostelium cells and reaches an intracellular concentration of 1 µM, sufficient to activate PKA, at an extracellular concentration of 30 µM, which is insufficient to activate CAR. Expression of cAMP-regulated prespore and prestalk genes and the aggregative PDE gene are effectively induced by CAR agonists and very poorly by PKA agonists. Even Sp-6SEtcPuMPS is ineffective to induce gene expression. These data not only indicate that surface cAMP receptors are the first targets for cAMP-induced gene expression, but argue against direct induction of expression of these genes by cAMP-induced PKA activation.
    corecore