648 research outputs found
Visualizing Sensor Network Coverage with Location Uncertainty
We present an interactive visualization system for exploring the coverage in
sensor networks with uncertain sensor locations. We consider a simple case of
uncertainty where the location of each sensor is confined to a discrete number
of points sampled uniformly at random from a region with a fixed radius.
Employing techniques from topological data analysis, we model and visualize
network coverage by quantifying the uncertainty defined on its simplicial
complex representations. We demonstrate the capabilities and effectiveness of
our tool via the exploration of randomly distributed sensor networks
NOViSE: a virtual natural orifice transluminal endoscopic surgery simulator
Purpose: Natural Orifice Transluminal Endoscopic Surgery (NOTES) is a novel technique in minimally invasive surgery whereby a flexible endoscope is inserted via a natural orifice to gain access to the abdominal cavity, leaving no external scars. This innovative use of flexible endoscopy creates many new challenges and is associated with a steep learning curve for clinicians. Methods: We developed NOViSE - the first force-feedback enabled virtual reality simulator for NOTES training supporting a flexible endoscope. The haptic device is custom built and the behaviour of the virtual flexible endoscope is based on an established theoretical framework – the Cosserat Theory of Elastic Rods. Results: We present the application of NOViSE to the simulation of a hybrid trans-gastric cholecystectomy procedure. Preliminary results of face, content and construct validation have previously shown that NOViSE delivers the required level of realism for training of endoscopic manipulation skills specific to NOTES Conclusions: VR simulation of NOTES procedures can contribute to surgical training and improve the educational experience without putting patients at risk, raising ethical issues or requiring expensive animal or cadaver facilities. In the context of an experimental technique, NOViSE could potentially facilitate NOTES development and contribute to its wider use by keeping practitioners up to date with this novel surgical technique. NOViSE is a first prototype and the initial results indicate that it provides promising foundations for further development
Medical cannabis in multiple sclerosis
Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating and neurodegenerative disease of the central nervous system that affects over 100 000 individuals in the UK. The symptoms of MS are heterogenous and correspond to the location of demyelination. However, common symptoms include sensory, motor, cognitive and affective disturbances. While the cornerstone of medical therapy is disease modifying agents, there is an ongoing need to develop symptomatic treatments. Cannabis-based medicinal products (CBMPs), which were partially legalised in the UK in November 2018, have been touted as a potential management option for the associated sequelae of MS. Nabiximols, an oromucosal spray containing cannabidiol and (−)-trans-Δ9-tetrahydrocannabinol, has been extensively evaluated for the treatment of MS-related spasticity. However, unlicensed CBMP formulations are a novel therapeutic class of medications, of which the clinical effects are less well known. Yet, there are promising indications for the use of CBMP in the symptomatic treatment of MS. This article reviews the literature on efficacy and safety of medical cannabis for people with MS
Novel clip applicator for minimally invasive surgery.
BACKGROUND: Ligation clips are used ubiquitously throughout minimally invasive surgery for apposition of tissues. Their size limits their application beyond ligation of small tubular structures. A novel clip and clip applicator that allows for broad-area clamping and rotation has been developed by our team. The primary aim of this study is to provide preliminary data assessing tensile strength of the clip across apposed segments of bowel. METHODS: A comparative study evaluating the maximum load (N) held across two apposed tissues by (a) our novel broad-area clip and (b) a conventional commercial clip was performed. Two sections of porcine bowel were clamped together and the maximum load (N) was measured using a tensile strength material testing machine. A preliminary experiment comparing staple line leak pressures in a porcine model ± clip enforcement of staple line was also conducted. p < 0.05 determined statistical significance. RESULTS: Twenty-four samples (intervention = 15; control = 9) of porcine bowel annealed by surgical clips were tested. The mean maximum force withheld by the bowel and staples was greater for our novel clip design (2.043 ± 0.831 N) than the control clip (1.080 ± 0.466 N, p = 0.004). Ten staple line (intervention = 5; control = 5) pressures of porcine bowel were measured. There was no statistically significant difference between the leak pressures with clip reinforcement (84.8 mmHg; range 71.8-109.8 mmHg), or without (54.1 mmHg; range 26.3-98.9 mmHg). CONCLUSION: These preliminary results suggest that our novel clip is able to withstand higher tensile force across tissues compared to a leading commercial clip. A small preliminary trial of effect on leak pressures demonstrated no statistical significance; however, increasing reliability of staple line deformation may be a clinically important finding. Whilst further iteration of product design and clinical testing is required, this product may occupy an important clinical niche through staple line reinforcement, enterotomy closure and other applications
Long-term Disease-free Survival Following Combination Multi-visceral and Metastatic Resection with Neoadjuvant FOLFIRINOX for Pancreatic Adenocarcinoma: A Case Report.
We describe a case of metastatic pancreatic adenocarcinoma treated with neoadjuvant FOLFIRINOX chemotherapy and combined pancreatic multi-visceral and metastatic liver resection in a patient currently disease-free four years after diagnosis
Metagenomic analysis of double-stranded DNA viruses in healthy adults
BackgroundThe Human Microbiome Project (HMP) was undertaken with the goal of defining microbial communities in and on the bodies of healthy individuals using high-throughput, metagenomic sequencing analysis. The viruses present in these microbial communities, the `human virome¿, are an important aspect of the human microbiome that is particularly understudied in the absence of overt disease. We analyzed eukaryotic double-stranded DNA (dsDNA) viruses, together with dsDNA replicative intermediates of single-stranded DNA viruses, in metagenomic sequence data generated by the HMP. 706 samples from 102 subjects were studied, with each subject sampled at up to five major body habitats: nose, skin, mouth, vagina, and stool. Fifty-one individuals had samples taken at two or three time points 30 to 359 days apart from at least one of the body habitats.ResultsWe detected an average of 5.5 viral genera in each individual. At least 1 virus was detected in 92% of the individuals sampled. These viruses included herpesviruses, papillomaviruses, polyomaviruses, adenoviruses, anelloviruses, parvoviruses, and circoviruses. Each individual had a distinct viral profile, demonstrating the high interpersonal diversity of the virome. Some components of the virome were stable over time.ConclusionsThis study is the first to use high-throughput DNA sequencing to describe the diversity of eukaryotic dsDNA viruses in a large cohort of normal individuals who were sampled at multiple body sites. Our results show that the human virome is a complex component of the microbial flora. Some viruses establish long-term infections that may be associated with increased risk or possibly with protection from disease. A better understanding of the composition and dynamics of the virome may hold important keys to human health. BMC Biol 2014 Sep 10; 12(1):71
- …