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Metabolic and metagenomic outcomes
from early-life pulsed antibiotic treatment
Yael R. Nobel1,*, Laura M. Cox1,2,*, Francis F. Kirigin1, Nicholas A. Bokulich1, Shingo Yamanishi1, Isabel Teitler1,

Jennifer Chung1, Jiho Sohn1, Cecily M. Barber1, David S. Goldfarb1,3, Kartik Raju1, Sahar Abubucker4,

Yanjiao Zhou4,5,9, Victoria E. Ruiz1, Huilin Li6, Makedonka Mitreva4,7, Alexander V. Alekseyenko1,8,

George M. Weinstock4,9, Erica Sodergren4,9 & Martin J. Blaser1,2,3

Mammalian species have co-evolved with intestinal microbial communities that can shape

development and adapt to environmental changes, including antibiotic perturbation or

nutrient flux. In humans, especially children, microbiota disruption is common, yet the

dynamic microbiome recovery from early-life antibiotics is still uncharacterized. Here we use

a mouse model mimicking paediatric antibiotic use and find that therapeutic-dose pulsed

antibiotic treatment (PAT) with a beta-lactam or macrolide alters both host and microbiota

development. Early-life PAT accelerates total mass and bone growth, and causes progressive

changes in gut microbiome diversity, population structure and metagenomic content, with

microbiome effects dependent on the number of courses and class of antibiotic. Whereas

control microbiota rapidly adapts to a change in diet, PAT slows the ecological progression,

with delays lasting several months with previous macrolide exposure. This study identifies

key markers of disturbance and recovery, which may help provide therapeutic targets for

microbiota restoration following antibiotic treatment.
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A
ntibiotic use has reached enormous proportions around
the world. In the United States, 262 million courses of
antibiotics were prescribed to outpatients in 2011, a rate

of 842 courses per 1,000 people annually1. Use is highest in
children under 10, who receive more than 40 million courses per
year1,2. Extrapolating from prescription data, the average US
child receives three antibiotic courses in the first two years of life,
and 10 courses by the age of 10 (ref. 1). However, prescription
rates are not consistent: within the US, prescription frequency
varies by more than 50% across regions1, and even more among
individual practitioners3. In Sweden, antibiotic use is 40% of that
in the US4. These disparities suggest opportunities to curtail
antibiotic use in the US.

A well-known consequence of antibiotic use is the development
of bacterial antibiotic resistance5. The impact of antibiotics on
host and microbial function, on the other hand, has been little
studied, as these medications have long been considered
extremely safe. The intestinal microbiota aids the host in
metabolic and immunological development6 and provides
beneficial functions such as vitamin production and pathogen
displacement. Despite the generally low-risk profile of antibiotics,
these medications might be detrimental to host health by
disrupting conserved functions of the microbiota, especially
when given during critical developmental times. Because the
extent of microbiota perturbation can depend on the antibiotic
used7, characterization of the effects of commonly prescribed
antibiotics is needed to develop clinical guidelines.

In addition to directly altering the gut microbiome, antibiotics
may impede the ability of the gut microbiota to adapt to stressors.
Consumption of a high-fat diet (HFD) is pervasive in westernized
societies, including among young children. In murine models,
HFD alone alters gut microbiota composition8. A second
‘hit’—antibiotic use—might alter the ability of the microbiota to
adapt to HFD, modulating the microbial and/or phenotypic
effects of HFD.

Since the 1940s, farmers have added low doses of antibiotics to
food or water of livestock for growth promotion. The efficacy of
this practice has resulted in extensive use9. The microbiome is a
key mediator of these effects; for example, germ-free chickens do
not have the accelerated growth seen in conventionally raised
animals exposed to antibiotics10, and in other models,
manipulating the microbiota through transferring specific
organisms can promote weight gain11. In prior studies, we
examined the effects of such continuous low antibiotic doses
(sub-therapeutic antibiotic treatment (STAT)) on the murine
intestinal microbiota, showing altered metabolic phenotypes12,13.

In contrast to farm animals receiving STAT for growth
promotion, humans receive 10- to 100-fold higher antibiotic
exposures for short courses to treat acute infections2. Here, to
better understand how human antibiotic use may alter microbial
ecology and potentially contribute to the population-wide
changes in metabolic development, we develop a mouse model
that provides early-life therapeutic-dose pulsed antibiotic
treatment (PAT), designed to mimic paediatric antibiotic use.
Amoxicillin, a beta-lactam, and tylosin, a veterinary macrolide,
were used, as these antibiotic classes are the most commonly
prescribed to children2. We find that early-life PAT leads to
short-term increases in mouse weight and bone growth and
longer-term alterations in gut microbiome diversity, composition
and metagenomic content that remained months after antibiotic
exposure. We provide evidence of the altered metabolic potential
by confirming changes to a microbiota-specific metabolic
pathway, oxalate degradation14, at both metagenomic and
metabolite levels. Whether or not antibiotic-mediated effects
on growth function through the microbiota, these findings
illustrate the potential functional consequences of early-life

antibiotic-induced microbial perturbations and highlight the
need to re-examine antibiotic guidelines in the human
population.

Results
Early-life PAT alters murine growth. Female C57BL/6J mice
received three short courses of therapeutic-dose amoxicillin,
tylosin, alternating courses of either antibiotic (mixture) or no
antibiotics (control) (Fig. 1a and Supplementary Fig. 1). To
mimic early life use by human children, the PAT was completed
shortly after weaning, and then mice received high-fat chow to
enhance metabolic phenotypes13. After one pulse, all mouse
groups had identical weights on day 21 (Fig. 1b), but early-life
PAT significantly increased the cumulative weight gain from 3 to
6 weeks, an effect continuing through late life in tylosin mice
(Fig. 1c and Supplementary Fig. 1b).

Tylosin and amoxicillin PAT had different effects on body
composition. Compared with controls, tylosin significantly
increased both total and lean mass, while amoxicillin only
significantly increased lean mass (Fig. 1d–f). All groups of PAT
mice developed larger bones than controls (Fig. 1g,h), but
increases in bone area and mineral content were most
pronounced in the amoxicillin group, demonstrating body
composition variation based on antibiotic class. When mass-to-
bone ratio (total body mass/bone area) was calculated as a proxy
for body mass index (Fig. 1i), the tylosin and mixture mice both
gained mass/area at significantly higher rates than control
(P¼ 0.015 and 0.005, respectively; longitudinal analysis using
the linear spline models). Altogether, these data demonstrate
significant early-life PAT-antibiotic-specific growth promotion.

Effects on host physiology. As hepatic metabolism can be altered
with early-life antibiotic exposure13, potentially as a result of
altered growth, direct effect of antibiotics or influence of the
microbiota through the enterohepatic circulation, we examined
whether we could detect PAT effects on the liver long after
antibiotic cessation. Early-life tylosin significantly elevated
micro- and overall hepatic steatosis in later life (Supplementary
Fig. 2a–e), while amoxicillin significantly reduced microsteatosis.
All groups had similar liver mass (Supplementary Fig. 2f). PAT
induced changes in hepatic gene expression, with more
upregulated than downregulated genes with respect to controls
(Fig. 2a). While few genes had been significantly modulated by
both the early-life tylosin and amoxicillin exposures (Fig. 2b–d),
hierarchical clustering of genes significant in either group
(Fig. 2e) indicates similar trends in both antibiotic groups.

Altered biological functions, predicted by Ingenuity Pathway
Analysis, revealed antibiotic-specific effects; several pathways,
including those related to gene expression, cancer, and organis-
mal survival, were abnormal in both groups (Fig. 2f, green bars).
Early-life tylosin exposure also increased expression of genes
relating to lipid metabolism and cellular movement and assembly,
consistent with the increased steatosis. Both by microarray and
qPCR, Hspb1, a heat-shock protein reported as microbiota
modulated15, was significantly downregulated in mice receiving
either antibiotic (Supplementary Fig. 2g). The alterations in
hepatic gene expression, long after the final antibiotic course,
demonstrate that these early-life exposures have metabolic
influences, partially conserved across both antibiotic classes,
which can be detected long after antibiotic exposure.

To investigate systemic impacts of PAT, metabolic hormones
were measured in fasting serum samples at sacrifice. Early-life
tylosin or mixture PAT significantly reduced ghrelin compared
with controls, whereas amoxicillin showed a lesser effect
(Supplementary Fig. 3a–e). Peptide YY, leptin, amylin and
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insulin did not significantly differ between the groups. As
expected, leptin levels were positively correlated with fat mass
in control mice alone, PAT mice alone and in all mice
(Supplementary Fig. 3g–i). Peptide YY negatively correlated with
fat mass in the control mice, as expected, but not in the PAT mice
(Supplementary Fig. 3j–l), indicating that PAT had disrupted this
metabolic relationship. In all groups, faecal caloric contents
decreased over time (Supplementary Fig. 3f), not differing
between PAT and control.

PAT-induced microbiota disruption. Microbiota composition
was surveyed by sequencing the 16S rRNA gene from serial PAT
and control pup faecal pellets and from representative mothers
(Fig. 3a), yielding 2,683,548 quality-filtered sequences with a
mean±s.d. depth of 6,899±3,009 sequences per sample. The

richness and Shannon Index remained relatively constant in
control mice, with a-diversity similar to their mothers; however,
PAT decreased both richness and Shannon evenness even
after one antibiotic pulse, with immediate and sustained reduc-
tions in diversity more pronounced following tylosin exposure
(Fig. 3b). While amoxicillin resulted in milder reductions, there
was a progressive loss with each dose, indicating the importance
of both class and number of courses. Although the PAT groups
largely converged with control over time, differences never
fully resolved.

We next examined compositional changes at the phylum level
by qPCR and high-throughput sequencing. Following antibiotic
cessation and switch to HFD, Bacteroidetes in the mixture group
and some of the tylosin mice were dramatically reduced
compared with control, whereas little change was observed in
the amoxicillin mice (Supplementary Fig. 4a–d). Beyond changes
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at the phylum level, the microbiota from mice receiving tylosin
or the mixture had significantly different overall microbiota
composition from controls (adonis test of unweighted

UniFrac distances with Bonferroni-corrected P-valueo0.05;
Supplementary Fig. 4e), detected as early as the first time point
(one antibiotic pulse), extending to months after antibiotic
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cessation. For amoxicillin, a significant shift only was detected
after all three pulses, and overall community structure did
not differ from controls 1 week after antibiotic cessation and
switch to HFD, indicating the much more prolonged effects
of the macrolide-based treatments compared with the beta-
lactam. Unweighted UniFrac distances by group and cage
(Supplementary Fig. 4f) revealed that control microbiota
remained relatively homogenous over time (cage 1 and 2);
one cage of amoxicillin mice had microbiota similar to control

(cage 3), while the other two showed divergence from control
either immediately after three pulses of antibiotic (cage 5) or
weeks after antibiotic cessation (cage 4). Tylosin and mixture
microbiota behaved similarly, regardless of cage, with the greatest
divergence after three pulses of antibiotic, and gradually
approaching control composition by the end of the experiment.
These data indicate that the strong perturbation by macrolide
produced consistent effects, whereas the milder disruption by
beta-lactam had more variation in microbiota effects.

Amoxicillin

Tylosin

Diet change

Samples: 

0 5 10 15 20 25 30 35 40 45 50 70 90 110 130 150

Control

Amoxicillin

Tylosin

Mixture

Nursing Chow High-fat diet
a

b

c

0
20

0
60

0
1,

00
0

Day of Life

0
2

4
6

8

Mother

Control

Am-oxicillin

Mixture

Tylosin

0 50 100 0 50 100

Day of Life

Richness Shannon Index

Day of life

(time points 1–14)

Bacteroidales; other
Prevotellaceae

Rikenellaceae
Bacteroidetes; other

Clostridia; other
Anaeroplasmataceae

Bacteria; other

Tm7; other

Enterobacteriaceae
Verrucomicrobiaceae

Bacteroidaceae
Enterococcaceae

Peptostreptococcaceae
Staphylococcaceae

Alcaligenaceae
Clostridiaceae

Lactobacillales; other

Clostridiales; incertae sedis xiv
Porphyromonadaceae

Peptococcaceae
Coriobacteriaceae

Lactobacillaceae
Lachnospiraceae

Firmicutes; other
Streptococcaceae
Clostridiales; other
Ruminococcaceae

Erysipelotrichaceae

0.00 0.25 0.50 0.75 1.00

Pre-HFD Post-HFD

Anaeroplasmataceae
Porphyromonadaceae

Bacteroidales; other
Bacteroidetes; other

Bacteria; other
Rikenellaceae

Enterobacteriaceae
Prevotellaceae

Peptostreptococcaceae

Bacteroidaceae
Staphylococcaceae

Alcaligenaceae
Tm7; other

Peptococcaceae
Clostridia; other

Clostridiales; clostridiaceae
Clostridiales; incertae sedis xiv

Coriobacteriaceae
Lachnospiraceae

Lactobacillales; other
Clostridiales; other
Ruminococcaceae

Lactobacillaceae

Verrucomicrobiaceae
Enterococcaceae

Erysipelotrichaceae
Firmicutes; other

Streptococcaceae

AUCAUC

0.00 0.25 0.50 0.75 1.00

Verrucomicrobiaceae
Incertae sedis xiv

Prevotellaceae
Erysipelotrichaceae
Ruminococcaceae

Bacteroidaceae
Peptococcaceae

Clostridia; other
Alcaligenaceae

Anaeroplasmataceae
Tm7; other

Lactobacillaceae
Coriobacteriaceae

Rikenellaceae
Staphylococcaceae

Clostridiaceae
Clostridiales; other

Peptostreptococcaceae
Enterobacteriaceae
Bacteroidales; other

Lachnospiraceae
Porphyromonadaceae

Bacteria; other
Bacteroidetes; other

Firmicutes; other
Lactobacillales; other

Enterococcaceae
Streptococcaceae

Pre-HFD Post-HFD

AUC

0.00 0.25 0.50 0.75 1.00

Control Amoxicillin Tylosin

Pre-HFD Post-HFD

Figure 3 | Ecological outcomes from early-life PAT and response to dietary intervention. (a) Experimental design and timing of microbiota samples.

(b) a-diversity measured at a coverage depth of 3,000 sequences per sample. (c) Differentiating bacterial families immediately before and after

introduction of HFD. Area-under-curve (AUC) with 95% confidence intervals (grey lines) for differentiating pre-HFD and post-HFD mice is plotted by

treatment group in major families (41% relative abundance in at least one mouse). Significantly predictive results (Mann–Whitney test) after false-

discovery rate correction (qo0.05) are indicated by grey-filled circles.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8486 ARTICLE

NATURE COMMUNICATIONS | 6:7486 | DOI: 10.1038/ncomms8486 | www.nature.com/naturecommunications 5

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


To identify key members of the microbiota associated with a
rapid transition to HFD, we performed area-under-the-curve
analysis (Fig. 3c). Especially for the controls, multiple families
changed significantly (false-discovery rate-adjusted P-value,
qo0.05, Mann–Whitney U-test), either increasing or decreasing
after HFD commencement. Members of the phylum Firmicutes
have been reported to increase with HFD exposure at the expense
of Bacteroidetes16, and such patterns were observed in control
mice with the increase of Erysipelotricaceae, Ruminococcaceae,
Streptococcaceae, unclassified Clostridiales and Firmicutes other,
and the decrease of Rikenellaceae, Prevotellaceae, Bacteroidales
other and Bacteroidetes other. Many similar families were
changed in the amoxicillin mice in the same direction, but were
not significant. In tylosin mice, changes were partially in the same
direction (Streptococcaceae, Clostridiales other, Firmicutes other
and Prevotellaceae) and partially in the opposite direction
(Erysipelotrichaceae, Ruminococcaceae, Rikenellaceae,
Bacteroidales other and Bacteroidetes other). Thus, the
antibiotic exposures modified typical microbiota responses to
HFD, with more aberrant responses observed with the macrolide
than the beta-lactam.

PAT delays microbiota maturation. Because of the importance
of the developing microbiota, we compared the relative matura-
tion rates of control and antibiotic-perturbed microbiota using a
Random Forests17 regression model to predict day of life as a
function of microbial composition18. Microbial maturity of
control samples could be accurately predicted (Supplementary
Fig. 5a) using 42 key operational taxonomical units (OTUs;
Fig. 4a). Most of these 42 biomarkers showed marked population
increases after HFD initiation, with delayed responses in the
tylosin and mixture groups (Fig. 4b) accounting for their
persistent microbial immaturity through day 142 (Fig. 4c). As
the effects of diet and ageing cannot be separated, we constructed
a second maturity model for the period of early life before HFD
(Supplementary Fig. 5b). In the normally developing (control)
mice, several OTUs predominated after weaning, diminished over
time and were succeeded by other OTUs. Amoxicillin caused
minimal disruption, whereas mixture and tylosin treatment
substantially reduced OTUs associated with normal maturation
(Supplementary Fig. 5c).

Microbiota-by-age z-scores (MAZ)18 can quantify delayed or
accelerated microbiota development in response to an exposure.
Dietary composition strongly influences intestinal microbiota19

and thus microbial age predictions; accordingly, some of the
control samples immediately shifted after HFD initiation,
predicting an older age (Fig. 4c). PAT delayed both maturation
and response to HFD, with the greatest effects from tylosin or
mixture exposure. The first antibiotic pulse had no effect on
microbial maturity, but MAZ dropped substantially after the
second pulse, progressively decreasing during the third pulse.
The amoxicillin group approached control between pulses, and
the MAZ score converged with control after B1 week of HFD. The
tylosin and mixture groups trended towards control on HFD, but
never converged. In total, antibiotic exposure delayed microbiota
maturation and response to diet, with both the number of courses
and antibiotic class determining the extent of disruption.

Linking perturbation with outcomes. Grouping samples by
composition facilitates characterization of microbiota perturba-
tions. Following evidence that human microbiota may segregate
into clusters20, we asked whether the PAT-induced microbial
shifts could be similarly characterized, and found that four
distinct groups best captured the taxonomic variation
(Supplementary Fig. 6a). Offspring control microbiota stably
clustered with the maternal samples initially (cluster 1), then

shifted to a new community state (cluster 4) immediately
following introduction of HFD (Fig. 5a). Amoxicillin samples
showed mild disruptions for half of the mice after at least two
pulses, but converged with controls in cluster 4 shortly after HFD
introduction. In tylosin and mixture mice, one tylosin pulse
immediately disrupted microbiota, shifting samples to cluster 2
(mildly altered state) or cluster 3 (markedly altered from control).
All samples shifted to cluster 3 following at least two doses of
tylosin. As with amoxicillin, the samples eventually converged in
cluster 4 following HFD, but this recovery was delayed and
followed a distinct trajectory (Fig. 5b,c). These community
dynamics indicate that sequential antibiotic treatments were more
disruptive than single antibiotic exposure, show that tylosin had
greater effect on the gut microbiota than amoxicillin and confirm
the strong effect of diet on the microbiota19.

Each cluster was characterized by different dominant microbial
populations at the phylum and OTU levels (Supplementary
Fig. 6b–c). In maternal and normal chow-associated cluster 1,
Bacteroidetes (B) and Firmicutes (F) dominated (B4F) and had
higher levels of Lactobacillus than other clusters. In response to
HFD (cluster 4), the B/F proportions reversed, and the genus
Allobaculum, known to be HFD associated13, increased. Similar to
HFD, both clusters 2 and 3 (associated with antibiotics) also had
F4B, and had large blooms of Verrucomicrobia (Akkermansia),
small blooms of Proteobacteria (Enterobacter) and reductions in
other taxa. Bacteroidetes was almost completely lost in the
tylosin-associated cluster 3, demonstrating that the composition
of this cluster was more deviated from baseline than that of the
cluster associated with either amoxicillin or one pulse of tylosin
(cluster 2).

Because there was variability in the way mice in each antibiotic
group responded to and recovered from antibiotics, we next
interrogated whether certain microbiota conformations were
associated with changes in body composition. We used the cluster
identity at day 50 to categorize how the microbiota recovered
from antibiotics and responded to HFD in a short time period,
and examined the concurrent and later changes in body
composition. We found that mice that had a mild dysbiosis in
cluster 2 (including mice receiving amoxicillin, tylosin and
mixture) had significantly (Po0.05, analysis of variance
(ANOVA) with Tukey post-test) higher total and lean mass,
and bone mineral content, area and density at day 50 compared
with mice that transitioned directly from normal chow cluster 1
to HFD cluster 4 (all control and three amoxicillin mice)
(Fig. 5d). Of these changes, elevated lean mass, bone mineral
content and bone mineral density remained significantly elevated
at day 135 of life (Fig. 5e). Mice in cluster 3 (tylosin and mixture
mice), which exhibited more extensive shifts in the microbiota
from control, did not have significant changes in body
composition from cluster 2, indicating that a larger perturbation
may dampen the growth promotion effect.

PAT alters the intestinal metagenome. In metagenomic analyses
of 60 faecal samples subjected to shotgun sequencing at a depth of
5 GB each, all mothers and pre-weaning controls (day 21) seg-
regated together on the basis of hierarchical clustering, with high
levels of Lactobacillus, while all but one sample from the anti-
biotic-treated mice segregated separately and had high levels of
A. muciniphila genes (Supplementary Fig. 7). Most (83.3%) of the
18 samples from tylosin mice aggregated together, with sub-
stantial Lactobacillus depletion and simultaneous Enterococcus
expansion. Consistent with the phylogenetic distribution, nearly
all tylosin samples aggregated together when clustered by Kyoto
Encyclopedia of Genes and Genomes (KEGG) module abundance
(Supplementary Fig. 8), with decreases in modules related to
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glycolysis, gluconeogenesis and tRNA biosynthesis, among others,
and increases in modules related to the citric acid cycle and
nucleoside (inosine) and amino acid (leucine) biosynthesis,
among others. Collectively, these trends provide evidence that
PAT, especially tylosin, shaped metabolic gene populations.

To further examine impact on microbiota function, control
and PAT metabolic KEGG module abundance was compared
using univariate analyses by LEfSe (ref. 21) (Fig. 6a). Compared
with control, tylosin significantly affected several metabolic
modules in both early-life (normal chow, pre-day 41;
Supplementary Fig. 9b) and late-life (HFD, post-day 41;
Supplementary Fig. 10b, Supplementary Table 1). Notably, tylosin

shifted carbohydrate glycolytic metabolism, depleting the classic
Embden–Meyerhoff pathway while increasing the alternate
Entner–Doudoroff pathway. Importantly, the early-life tylosin-
altered microbial functions related to energy yield from glucose
were maintained after antibiotic exposure ceased and diet
changed. Amoxicillin also significantly, but less extensively,
altered late-life KEGG modules compared with control (Fig. 6a
and Supplementary Fig. 10c). Both antibiotics depleted genes
related to glycolysis, isoprenoid biosynthesis, tRNA biosynthesis
and ribosomes, and enriched genes related to LPS synthesis,
proline and vitamin biosynthesis, pyruvate oxidation and
molecular transport (Supplementary Table 1). These data indicate
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metagenomic changes due to the early-life PAT, persisting well
into adulthood. The conserved metabolic effects of both
antibiotics indicate global, persistent responses to early-life
perturbation.

Microbial oxalate-degrading capacity. To assess the impact of
PAT on microbial metabolic capacity, we examined the oxalate-
degradation pathway, absent in mammals but well-conserved in
bacteria. Oxalate is often present in foods of plant origin, and its
metabolism and clearance are critical for urologic health in
mammals, which rely on gut microbial species for its digestion.
We monitored the three microbial oxalate degradation pathway
genes, frc, oxc and oxlT (ref. 22), and found that the relative
abundance of the linked genes oxc and frc showed nearly identical
flux over time in all three experimental groups, whereas
oxlT showed overall lower abundances and unique trajectory
(Fig. 6b–d). In the controls, relative ortholog abundances
generally remained stable near maternal levels, whereas frc and
oxc varied dramatically in early-life PAT mice. Compared with
maternal samples, faecal oxalate levels were reduced during early
life in control and amoxicillin pups, but not in the tylosin pups
(Fig. 6e), consistent with simultaneous low oxc and frc relative
abundances. Following the second antibiotic pulse, frc and oxc
relative abundances declined further in both antibiotic groups.
After HFD initiation, as frc and oxc abundances normalized,
faecal oxalate levels fell in all groups.

Because different orthologous genes within bacterial popula-
tions may account for the substantial intergroup oxlT relative
abundance differences, we examined the responsible variants.
Hierarchical clustering (Fig. 6f) showed deep branching, with
samples from tylosin mice clustering at one pole and those from
mother, pre-weaning control and day 21 amoxicillin mice at the
other. The tylosin samples showed unique orthologs not
otherwise detectable in control. A large ortholog set, detected
uniformly across control and PAT mice, appeared solely after
HFD introduction. The relative abundance of the oxlT orthologs
in the amoxicillin mice over time was similar to controls, whereas
tylosin mice were markedly altered in early-life, with partial
recovery by late adulthood (Fig. 6g).

Distinct disruption and recovery patterns (p1–p6) could be
detected for oxlT, which can serve as a proxy for disruption and
recovery of broader microbiota functions (Fig. 6g). Pattern p1
contained orthologs exclusive to PAT mice, predominantly in the
tylosin mice, disappearing only in the final sample obtained long
after antibiotic cessation. In contrast, patterns p3 and p4 included
orthologs absent in tylosin mice either entirely or during
development, or reestablished at the final time sampled,
respectively. Patterns p5 and p6 corresponded to orthologs
appearing after HFD introduction in all mice. In total, the
substantial flux in early-life (tylosin4amoxicillin) metagenomic
content was consistent with the 16S data. Through metagenomic
sequencing and metabolite characterization, we detected a
microbial pathway strongly influenced by PAT and dietary
alterations, differing by antibiotic regimen, with partial functional
recovery by gain of redundant genes.

PAT selects for antimicrobial resistance genes. Multiple classes
of antibiotic resistance-associated genes were examined by

mapping the metagenomic reads to the resistance gene database.
Among genes related to macrolide resistance, four—acrA, acrB,
ant3Ia and ant2Ia—were present at very low frequency (o10� 7)
among dams (Fig. 7a–d). However, all three mice in the tylosin
group showed blooms of these genes to B10� 4, as did one of the
mice receiving amoxicillin. No controls showed a change in fre-
quency of these genes. The same mouse receiving amoxicillin and
the three tylosin-receiving mice all had blooms of ampC, a beta-
lactamase gene (Fig. 7e). For 15 tetracycline genes (Fig. 7f) and
for hundreds of other genes in the metagenome, there were no
differences between mothers, controls and antibiotic-receiving
mice, indicating a lack of selection for their resistances.

Discussion
Antibiotic use is widespread in the US and worldwide, especially
in young children1, and the development of the early-life
microbiota is important for many aspects of health and
disease6,18. In this manuscript, we explore the effects of
antibiotics of commonly prescribed classes on gut microbiota
maturation, recovery from antibiotics and response to HFD.
While we are limited in drawing causal conclusions between
microbiota alterations and physiological outcomes, we provide
characterization of the microbiota recovery (resilience) after
early-life antibiotic exposures.

We created a murine model of early life pulsed antibiotic
treatment in conjunction with later HFD to understand the long-
term consequences of therapeutic-level antibiotics on microbial
ecology, function and ability to adapt to stressors. We found that
PAT affected both the host, with early effects on growth and body
composition, and the microbiome, with marked metagenomic
composition and functional changes, with similar patterns of
disruption, recovery and response to HFD in both the 16S and
metagenomic data. Consistent with the prior STAT models, in
which low-dose (sub-therapeutic) antibiotic treatment was
administered over a longer period12,13, we observed early
growth acceleration despite different exposure patterns and
antibiotic classes. PAT increased lean mass in all PAT groups,
bone in amoxicillin-treated mice, and trended towards increased
fat in tylosin-treated mice. Both bone and fat are of mesenchymal
origin, suggesting that effects of antibiotic exposure may be
partially mediated by altered mesenchymal stem-like cell
differentiation23. Further studies are needed to explore this
hypothesis. Compared with the STAT studies, the gain in fat mass
was of lower magnitude and duration, suggesting that therapeutic
courses of antibiotics may yield a more limited effect on long-
term metabolic outcomes.

Beyond changes in body composition and growth, PAT altered
hepatic gene expression and a metabolic hormone level long after
antibiotics were stopped, indicating the metabolic effects were
systemic. In terms of liver adiposity, tylosin increased micro-
steatosis, which has been linked with mitochondrial oxidative
stress, but not macrosteatosis, which is associated with metabolic
aberrations including obesity, insulin resistance, alcoholism and
malnutrition24. Hepatic changes could be mediated by several
factors, including influence from secreted microbial products via
the enterohepatic circulation, a direct effect of antibiotics25, or an
indirect reflection of the altered metabolic status of the rapidly
growing PAT mice. These observations raise the possibility that

Figure 5 | Dynamics of disruption, recovery and response to HFD. (a) Community structure over time within the four clusters identified by Calinski

analysis shown for mothers and for pups at selected representative time points: after the first, second and third antibiotic pulses and after starting HFD.

(b) Cluster assignment by mouse and time point. a, antibiotic group; c, cage (bars indicate mice in the same cage); m, mouse. Time points 1–14 correspond

to sequential samples (correlating with increasing day of life). (c) Microbiota transition map, circles and lines are scaled to represent number of mice

in each cluster (circle) or transitioning (line) between clusters. (d,e), Body composition grouped by day 50 cluster type at B50 days of life (d) and at B135

days of life (e). *Po0.05, **Po0.01, ***Po0.001, ANOVA with Tukey-post test. C, control; A, amoxicillin; T, tylosin; M, mother.
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early-life antibiotic treatment may influence metabolic
phenotypes in humans if there are similar effects from
paediatric exposures.

Unlike observations in agriculture, in which a range of sub-
therapeutic antibiotics result in similar growth promotion
effects9, PAT-mediated effects on host phenotype differed
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substantially by antibiotic class. Although further studies are
needed to explore the mechanism through which antibiotics yield
disparate effects, our metabolic studies of oxalate yield initial
contributions. Mice receiving amoxicillin had lower faecal oxalate
levels than mice receiving tylosin and higher levels of oxalate-
degradation genes, indicating removal of a major calcium-binding
anion from the gastrointestinal lumen. One explanation for the
amoxicillin group having greater bone mineral density than the
tylosin group is consistent with enhanced microbial oxalate
degradation, which could potentially free calcium for
gastrointestinal absorption and augment bone mineral density.

The intestinal microbiota can rapidly shift in response to diet,
which may reflect evolutionary advantages for the microbes, host
or both. Here the microbiota in control mice rapidly shift to
cluster 4 within 1 day of HFD. Conversely, for mice that had
already been exposed to a first ecological ‘hit’ of antibiotic
treatment, the response to HFD, a second hit, was different: the
majority of the PAT mice resisted adapting to the HFD, only
shifting to the HFD cluster weeks to months after introduction.
Of note, three amoxicillin mice clustered with controls through-
out the experiment, demonstrating that when the antibiotic
treatment had minimal effects on the microbiota community
structure, dietary responses were normal.

Cluster analysis also suggests that the extent of microbiota
perturbation may help determine antibiotic-mediated changes in
body composition: some perturbation is required for the effect,
but too much blunt the effect. Mice whose microbiota were able
to rapidly adapt to HFD (cluster 4 one day after HFD initiation),
including both control and amoxicillin mice, weighed less than
mice with mildly altered microbiota and lagged dietary responses
(cluster 2 one week after HFD), suggesting that taxonomic
differences could alter physiological outcomes when challenged
with HFD. Allobaculum that we have previously linked with
promoting metabolic health13 is depleted, while Lachnospiraceae
that we have previously linked with antibiotic-induced obesity12

is enriched in cluster 2. That these taxonomic associations are
consistent across independent studies with different antibiotic
regimens provides support for their potential metabolic

involvement. In contrast to mice with mild perturbation, mice
with a major disruption (cluster 3 one week after HFD), which
included near elimination of the prominent gut phylum
Bacteroidetes, did not show elevated weight gain. The intestinal
microbiota can contribute to overall energy harvest, and multiple
high-dose antibiotics that severely impact the microbiota can lead
to weight loss or have no effect on weight26,27. All three antibiotic
regimens were able to lead to mild disruption following HFD,
whereas only treatments involving the macrolide led to major
disruptions. Thus, we have identified two different potential
outcomes from antibiotic treatment with alternate effects on
weight. The association between mild disruption and weight gain
is consistent with our prior STAT studies, in which low-dose
antibiotics lead to a minor microbiota disruption and elevated
weight and adiposity13.

The dominance of A. muciniphila following antibiotic
exposure, particularly tylosin, is noteworthy. In humans,
Akkermansia populations may bloom after antibiotic courses28.
Levels are inversely correlated with body weight29 and bloom in
hibernating animals30. The ‘probiotic’ administration of A.
muciniphila has improved glucose tolerance and reduced
inflammation in adipose tissues31. In contrast, A. muciniphila
was enriched in the gut microbiota in type 2 diabetes mellitus32.
The high prevalence of Akkermansia in the antibiotic-associated
clusters 2 and 3, compared with low levels in the control and
HFD-associated clusters 1 and 4, may simply reflect antibiotic
perturbation of the microbiome, as in humans28. These
observations are consistent with our earlier view33 that
Akkermansia may represent an opportunistic microbe that
flourishes when ecosystems are disrupted.

Our studies in a mouse model show profound effects of the two
most widely prescribed antibiotic classes used in human children2

on the microbiota and metagenome, from the earliest dose
delivered through the mother’s milk and persisting long after
antibiotic cessation. The observed effects have potential clinical
implications. For example, both antibiotics selected for
microbiota with altered central carbohydrate metabolism
characteristics. The decreases in central glycolytic (Embden–
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Figure 7 | Selection for antibiotic resistance genes in the intestinal metagenome. Frequency of specified antibiotic resistance genes (a–f) that were
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antibiotic pulses; pink, HFD.
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Meyerhoff) pathways and aminoacyl-tRNA biosynthesis co-
occurred with increases in many nutrient transporters and
other carbohydrate-processing pathways, suggesting a global
switch in selection from production mode to transport/
scavenging mode. Further, PAT, especially tylosin, disrupted
oxalate metabolism at both the ortholog and metabolite levels.
Changes in intestinal oxalate levels may contribute to a range of
clinical syndromes, from impacting serum calcium concentration
and bone density (discussed above) to producing hyperoxaluria
and an increased risk for kidney stones14. Although our
functional analysis in this paper focused on oxalate, the fact
that changes in gene expression corresponded with changes in
measured oxalate excretion provides evidence that changes to the
microbiota were not merely substitutional. Future functional
studies can expand on this finding to delineate the specific
metabolic implications of PAT.

While analyses of mice are not always applicable to humans,
the observed phenotypes and reductions in diversity mirror
developmental effects of early-life antibiotic use in human cohort
studies. For example, adults in developed countries have
diminished gut microbiota diversity compared with those from
areas without extensive modernization34; early-life antibiotic
exposures could partially account for those findings35,36. Four
recent epidemiologic studies have shown increased adiposity in
children who were exposed to antibiotics early in life35,37–39. This
finding was consistent despite differences in study design, size,
geographic location and antibiotics to which children were
exposed. Development of animal models to better understand the
demonstrated impact of antibiotics on the microbiome and
growth and development are therefore critically important.

While there is heightened concern for disrupting the early-life
microbiota, antibiotic disruptions in adults may also be
important. Adult human studies have similarly demonstrated
that different classes of antibiotics impact the gut microbiome to
varying degrees (for example, amoxicillin has a less disruptive
effect than vancomycin)7. Furthermore, antibiotic treatment in
adults has been linked to recent weight gain40 and increased risk
of type 2 diabetes41, especially after multiple courses or sustained
exposure. Future studies are warranted to examine the impact of
PAT at multiple phases of life, early and late.

In addition to effects on metabolism, an altered microbiota
could also confer enhanced antibiotic resistance. Our metage-
nomic studies also provide evidence for the direct and indirect
selection of antibiotic resistance genes by both PAT antibiotics,
consistent with each antibiotic selecting for microbial strains
containing integron(s) expressing multiple resistances. While
antimicrobial resistance was not the primary focus of this study,
future studies can further elucidate the pattern of gene expansion
and recovery over time during and after antibiotic exposure.
More information about the ways in which such changes affect
the pathogenesis of gastrointestinal infection or host resistance to
infection may have clinical implications.

Our study has limitations. While we demonstrate murine
phenotypic differences associated with altered taxa and metagen-
ome, causality was not established. This study cannot exclude the
possibility that some of the phenotypic effects of PAT resulted
directly from antibiotic exposure, rather than from microbiota-
mediated changes; for example, macrolides are known to
directly impact hepatic physiology25. However, the significant
overlap in hepatic gene expression profiles in the amoxicillin- and
tylosin-exposed mice was not consistent with a macrolide effect
alone. In the STAT models, cecal content transplants to germ-free
mice transferred growth, adiposity and immunologic
phenotypes13, establishing the centrality of the microbiota in
that antibiotic effects model. Parallel PAT models using germ-free
mice will be needed to definitively establish causal relationships.

Consideration was given to whether a cage effect contributes to
the consistency of microbiota changes among mice exposed to the
same antibiotic (Fig. 3d). As expected, co-housed mice were more
similar than non-co-housed. However, regardless of cage
assignment, all mice that received tylosin (tylosin and mixture
groups) were far more similar to each other than to control mice
or those that received amoxicillin. That patterns of microbial
clustering were consistent based on antibiotic exposure,
regardless of caging, providing evidence that cage effect does
not explain the observed phenomena.

Pulsed antibiotic treatment affected the metabolism of young
mice. Although differences were observed and the overall
magnitude was small, both the beta-lactam (amoxicillin) and
the macrolide (tylosin) significantly affected early growth, lean
muscle mass, bone development and hepatic gene expression.
Because the antibiotics used represent the classes most widely
prescribed to children, and that our findings were consistent with
effects of early life sub-therapeutic antibiotic exposures12,13, this
new model extends hypotheses that early-life antibiotic exposures
could have long-term developmental metabolic effects, as
supported by animal models12,13 and human epidemiological
studies26,35,37–39. In addition, early-life PAT had extensive effects
on the gut microbiota that continued at least 120 days after the
last exposure, involving changes in both richness and community
structure; an unexpected finding, but clear and consistent. These
phenomena require further study, especially to characterize the
extent of perturbation and establish whether the microbes or
antibiotics are the drivers of physiological changes.

Methods
Mouse husbandry. Male and female C57BL/6J mice were obtained at 6 weeks of
age from The Jackson Laboratories (Bar Harbor, ME) and bred to produce the
study group litters. Mice were weaned at day 27 and separated by sex to retain only
females. Runts, defined as mice weighing less than two s.d. below the mean weight
of female C57BL/6J mice at day 28 of life (Jackson Laboratory Mouse Phenome
Database), were excluded from the experiment. All retained mice within each litter
remained in the same treatment group and were co-housed with each other only;
mice from separate litters within the same treatment group were maintained in
separate cages. Each treatment group included mice from at least two different
litters (see Fig. 3d). Mice were maintained on a 12-h light/dark cycle and allowed
ad libitum access to food and water. At day 41, mice were switched from standard
10% kcal fat rodent chow (PicoLab Rodent Diet 20; LabDiet, Brentwood, MO) to
45% kcal fat rodent chow (OpenSource Diets D12451; Research Diets, Inc., New
Brunswick, NJ) (Supplementary Figure 1). All mouse protocols were approved by
the New York University School of Medicine Institutional Animal Care and Use
Committee.

Antibiotic treatment. Mice were divided into four study groups; control mice
received no antibiotics, while treatment group mice received three antibiotic
courses: at days 10–15, 28–31 and 37–40 of life, amoxicillin, tylosin or mixture
(sequential courses of tylosin, amoxicillin and tylosin). Among the macrolides,
tylosin was selected owing to its water solubility, stability of solution at room
temperature and well-documented pharmacokinetics in animals42.

Tylosin tartrate and amoxicillin trihydrate (Sigma Aldrich, St. Louis, MO) were
dissolved in distilled deionized water at concentrations of 0.333 and
0.167 mg ml� 1, respectively, to provide mice with 50 mg of tylosin or 25 mg of
amoxicillin per kg body mass per day, based on an estimated daily water
consumption of 150 ml per kg body mass. Untreated water, provided by the facility,
was acidified to BpH 2.7. Experimental antibiotic doses were determined based on
pharmacokinetics of typical human paediatric exposures. In human children,
amoxicillin dosed at 45 mg kg� 1 per day achieved a peak serum concentration of
7.4 mg ml� 1 over an average of 3 days43 with an average time to peak of 1–2 h
(http://www.accessdata.fda.gov/drugsatfda_docs/label/2008/
050542s24,050754s11,050760s10,050761s10lbl.pdf). As the recommended dose for
infants r3 months of age is 30 mg kg� 1 per day, very young children are likely
exposed to a slightly lower peak serum concentration. In rodents, oral
administration of 25 mg kg� 1 of amoxicillin achieves similar pharmacokinetic
parameters, peaking in less than an hour at a concentration of 5.0 mg ml� 1 in the
plasma, with a half life of 0.3 h (refs 44,45). In human children, the therapeutic
macrolide azithromycin dosed at 10 (day 1) and 5 (days 2–5) mg kg� 1 per day, a
recommended regimen for acute otitis media (http://labeling.pfizer.com/
ShowLabeling.aspx?id=511) achieves a peak serum concentration of 0.2 mg ml� 1

with an average time to peak of 1.8 h (ref. 46). In rodents, oral administration of
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50 mg kg� 1 of tylosin, a veterinary macrolide, achieves similar pharmacokinetic
parameters42, peaking at 1.5 h at a serum concentration of r1.0 and with a half-life
of 0.4 h following intravenous injection.

Body composition and growth rate analyses. Beginning at day 21 of life, body
weights were measured daily for the first weeks of life, then weekly in mid- and
late-life, on an Ohaus CS200 electronic scale. Body composition, including total
body, lean and fat mass, percent body fat, bone mineral content, bone area and
bone mineral density, was determined using dual energy X-ray absorptiometry
(DEXA) with a Lunar PIXImus II mouse densitometer (GE Medical Systems,
Waukesha, WI), as described12 on or near days 28, 45, 90 and 135 of life.
Anaesthesia was maintained with 0.5% isofluorane in oxygen. Mice were sacrificed
by CO2 narcosis and cervical dislocation and blood was collected via cardiac
puncture and the liver and pancreas were collected. All samples were either fixed in
formalin or snap frozen and stored at � 80 �C until processing.

Serum hormone analysis. A protease inhibitor solution contained 0.1 ml protease
inhibitor cocktail (AEBSF, aprotinin, bestatin, EDTA, E-64, leupeptin; Sigma
Aldrich), 0.1 g 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF;
Sigma Aldrich), and 0.9 ml dipeptidyl peptidase-4 (DDPIV) inhibitor solution
(EMD Millipore Corporation, Billerica, MA). Blood collected at sacrifice was mixed
100:1 with the stock protease inhibitor. Blood cells and serum were separated by
centrifugation (1,000g for 10 min) and serum was frozen at � 70 �C. Serum spe-
cimens (100 ml) were examined using a Mouse Gut Hormone Panel (EMD Milli-
pore Corporation) using a Luminex 200 analyser (Millipore). Two-sided Wilcoxon
Rank-Sum tests were used for group comparisons.

Statistical analysis of longitudinal weight and DEXA data. Longitudinal ana-
lysis of early-life (weeks 3–5) and mid- and late-life (weeks 6–24) weights were
modeled by a linear trend model. For early life weight, the daily group means of
mouse weight were fit into the following model:

EðYijÞ¼ b0 þ b1Groupi þ b1Timeij ð1Þ
For mid- and late-life weights, the weekly group means of mouse weight were fit

into the following linear spline model with common knots at week 15:

E Yij
� �

¼b0 þ b1Groupiþ b2Timeijþ b3 Timeij� 15
� �

þ

þ b4Groupi�Timeij þb5Groupi� Timeij � 15
� �

þ
ð2Þ

where Yij is the weight of ith mouse at the jth time point; group¼ 0 indicates the
control group and Group¼ 1 indicates the PAT group; and (x)+ is defined as a
function that equals x when x is positive and is equal to zero otherwise. With the
above models, we performed the group comparisons of changing trends over the
periods of weeks 3–5, 6–14 and 15–24 (‘early’, ‘mid’ and ‘late’, respectively). Group
means of DEXA measurements also were fit to a linear spline model similar to
equation (2) with two common knots at week 6 and 15 and analysed over the same
‘early’, ‘mid’ and ‘late’ periods. The MIXED procedures of SAS software (version
9.2; SAS Institute, Inc., Cary, NC) were used to perform the tests and calculate the
estimates.

Statistical analysis of qPCR data. The normality of the data was first tested using
the Shapiro–Wilk test. Two sided t-test and Wilcoxon Rank-Sum tests were used
for group comparison on the normal and non-normal data separately.

Statistical analysis of serum data. Two-sided Wilcoxon Rank-Sum tests were
used for group comparison.

DNA isolation and analysis. Beginning at day 21 of life, faecal pellets were
collected daily for the first weeks of life, and weekly in mid- and late-life, then
stored at � 20 �C until processing. DNA was extracted from pellets using the
PowerSoil DNA isolation kit (Mo Bio Laboratories Inc., Carlsbad, CA) and stored
at � 20 �C. qPCR was performed in duplicate, using the SYBR Green 1 Master Kit
on a LightCycler 480 (Roche Applied Science, Indianapolis, IN). Bacterial stan-
dards were cloned into pGEM-T Easy vector following standard procedures and
purified using plasmid purification QIAfilter Midi Kit (QIAGEN Inc., Valencia,
CA), using described protocols and primers for total bacteria, Bacteroidetes and
Firmicutes47. For fixed time point statistical comparisons, a Shapiro–Wilk
normality test was first performed on each qPCR variable for each group. Two-
sided t-tests and Wilcoxon Rank-Sum tests were used for group comparisons on
the normal and non-normal data, respectively.

Histology and immunohistochemistry. Liver and pancreas tissue specimens were
collected into formalin at sacrifice. Specimens were processed on a Tissue Tek VIP
E150/300 tissue processor (Sakura Finetek USA Inc., Torrance, CA) and embedded
in paraffin. Digital image analysis of liver samples was performed as described48.
Hematoxylin–and-eosin-stained liver sections were assessed blindly and
independently by two readers. Ten arbitrarily selected images at � 200
magnification for each mouse liver biopsy were produced to ensure a representative

sample for each specimen. Extent of steatosis, lobular inflammation and hepatocyte
ballooning were assessed using the non-alcoholic fatty liver disease Activity Scoring
System49. Hepatocyte percent in each specimen exhibiting any degree of steatosis
was assigned a score as follows: 0¼o5%, 1¼ 5–14%, 2¼ 15–29%, 3¼ 30–65%
and 4¼465%, as described. Micro- and macro-vesicular steatosis were defined as
diameter r15 and 415 mm, respectively. Steatosis with diameter r1 mm, difficult
to differentiate from staining artifacts or heptocyte ballooning, was excluded from
the scoring assessment. Steatosis, lobular inflammation and hepatocyte ballooning
also were scored using the non-alcoholic fatty liver disease Activity Scoring System
by a third reader examining the entirety of each liver specimen at � 200
magnification. Hematoxylin-and-eosin-stained pancreas sections were similarly
assessed blindly and independently by two readers, counting the number of islets
per slide and measuring the diameter of the largest islet in each slide and the
number of constituent cells.

Liver gene expression. Liver sections collected at sacrifice were kept overnight in
RNAlater at 4 �C and then stored dry at � 80 �C. Total RNA was extracted using
the RNeasy Mini Kit (Qiagen, Germantown, MD), according to the manufacturer’s
instructions. Total RNA quantity was determined by Nanodrop ND-1000 and
quality was determined by agarose gel and the Agilent 2100 bioanalyzer. Total
RNA was used to prepare cDNA following the 30 IVT Express Kit labelling protocol
(Affymetrix, Santa Clara, CA) and hybridized to the Affymetrix Mouse Genome
430 2.0 Array chip (Affymetrix, Santa Clara, CA) for expression profiling of PAT
and control groups. Microarray data were analysed using the Limma package in the
R interface. The raw microarray data were normalized using the robust multi-array
average method50. Differentially expressed genes were found using the empirical
Bayes moderated t-statistics51. Probes with P-valueo0.01 and |log2fold change|
40.5 were considered to be differentially expressed. Alterations in predicted
biological functions were detected with Ingenuity Pathway Analysis (Qiagen,
Germantown, MD).

For validation by qPCR, 1 mg of total RNA was reverse transcribed to cDNA
using SuperScript II reverse transcriptase (Applied Biosystems). To design primers
for genes of interest and housekeeping genes, Ensembl and Primer3 were used.
Primer pairs were designed to span the intron closest to the 30 end of the simplest
protein-coding transcript. qPCR was performed on a 384-well plate with Power
SYBR Green (Applied Biosystems) and run on a ViiA7 Real Time qPCR system
(Applied Biosystems), using 0.5 mM primer concentration and 75 ng of cDNA.
Target mRNA was normalized using the DDCt method. All target genes were
normalized to GAPDH mRNA. Liver Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) and Hspb1 cDNA transcripts were quantified by RT–qPCR using the
Roche LightCycler480 with the following cycling parameters: 95 �C 5 min, then
45 cycles of 95 �C 10 s, 60 �C 10 s and 72 �C 20 s. Primers for GAPDH were F:
30-TGGTGAAGGTCGGTGTGAAC-50 , R: 30-CCATGTAGTTGAGGTCAATG
AAGG-50, and primers for Hspb1 were F: 30-GGCTACATCTCTCGGTGCTT-50 ,
R: 30-CTCAGGGGATAGGGAAGAGG-50 .

Bomb calorimetry. Faecal calories were measured using a Parr 6725 Semi-micro
calorimeter. Faecal pellets obtained during experiment days 31, 69, 101, 123 and
160 were dehydrated overnight at 56 �C with a silica gel desiccant. The calorimeter
was calibrated at the start of each day’s run using a benzoic acid standard to
determine the energy equivalent value. After the experimental calorimetric mea-
surements were obtained, the energy equivalent value was verified using a second
benzoic acid standard to ensure intra-run machine consistency. The final results
were corrected for fuse length and expressed as calories per gram of dry sample
weight.

Faecal oxalate assay. Faecal oxalate levels were measured by enzymatic deter-
mination (Trinity Biotech Oxalate Kit, Jamestown, NY). Individual faecal pellets
were lyophilized for 24 h and then rehydrated with 500ml of water, vortex-mixed,
acidified to pHo1 with 10N HCl, vortex-mixed, centrifuged at 10,000g for 15 min,
and the supernatant was used for oxalate detection. All reagent and sample
amounts were adjusted to 0.1� of the kit protocol. Each sample was run in
duplicate, absorbance was measured at 595 nm, and the means for duplicate
samples normalized to dry weight.

Metagenomics. Faecal pellets from three representative mice from the control,
tylosin and amoxicillin groups at six time points each, as well as six pre-birth
samples from mothers, underwent metagenomic analysis generating 5 GB/sample
for a total of 300 GB. Shotgun samples were barcoded and introduced to the
Illumina HiSeq instrument to produce 100 base-paired end reads (Supplementary
Table 2). Sequences for each sample were filtered for contaminants from the mouse
genome using bwa default parameters and for low-complexity regions using dust52.
Reads were aligned53 to a reference genome database including bacterial, archaeal,
lower eukaryotic and viral genomes, and a phylogenetic map was developed. In
brief, the cleaned reads were aligned to a database of nearly 6,000 reference genome
sequences as described54 using CLC (CLCbio) with the parameters –l 0.75 –s 0.8,
requiring alignments to meet an 80% idþ 75% aligned length cutoff. The breadth
(percent of covered bases over the length of the reference genome) and depth (sum
of the depths of each covered base divided by the length of the genome) of coverage
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were calculated based on all alignments of each genome represented in the database
using RefCov (http://gmt.genome.wustl.edu/packages/refcov/index.html). The
genomes with substantial alignments (41% depth and 1% breadth) were accepted.
The coverage values were then normalized to aligned reads to calculate depth of
coverage per million reads values. The depth of coverage per million reads values
were clustered using the Manhattan distance metric with R and the resulting
newick tree was visualized in iTOL55.

Metagenomic shotgun reads from each sample were searched against the KEGG
gene database (version 58) using Mblastx56 with the following parameters "-M 30 -
m 20 -e 1 -f S ". The search results were run through HUMAnN57, a pipeline
developed for obtaining enzyme and pathway abundance and coverage from
metagenomic communities. Differentially expressed enzymes and pathways were
identified using LEfSe21 with default parameters.

Metagenomic analysis of microbial oxalate metabolism. To perform functional
analysis of microbial oxalate degradation, query contigs were assembled using the
CLC de novo assembler as noted above, using all reads mapping to the three
oxalate metabolizing genes (frc, oxc and oxlT) present in the KEGG orthology
compendium. The resulting contigs were mapped using BLASTX58 against all
microbial sequences stored in KEGG (as of December 2012) that satisfied quality
fitness scores. Output was generated in BLASTX format 8 (‘-mformat 8’ BLASTX
parameter), as FASTA data files collected on a per-sample basis. Output files were
processed via HUMAnN57 to obtain relative abundance of the corresponding
KEGG orthologous oxalate metabolizing genes (referred as genomic identifiers
(GIDs)). To determine most impactful (dietary or antibiotic) environmental
factors, hierarchical cluster analysis of ortholog presence was performed based on
Euclidean distance of GID using the heatmap function, part of the R core
package59. To visualize relative abundance of presence patterns, abundance
quantification as output by HUMAnN was formatted and generated using the R
function ggplot2 (ref. 60). Quantitation of total GID fluctuation of the oxalate-
metabolizing genes by experimental group and by time point was performed using
the Python scripting language, processing raw output from HUMAnN into
R-compatible data tables.*****

Microbial 16S informatics. For each of the study mice, 14 timed samples were
studied and several samples from the mothers also were examined, for a total of
338 samples. The methods used for 16S rRNA sequencing were those of the
Human Microbiome Project61. Roche 454 sequencing of the V3–V5 regions on the
454 FLX platform was performed. The average number of reads was nearly 7,000
per sample, which was sub-sampled to an average of 3,000 reads to reduce the
variation in sampling per sample. The downstream processing of 16S rRNA
sequences was performed as previously described62. In short, the quality-filtered
sequences were clustered in QIIME v1.3.063 into 97% identity OTUs. The clusters
and representative sequences were determined using UCLUST programme64,
followed by taxonomy assignment using the RDP Classifier65 executed at 80%
bootstrap confidence cutoff. Phylogenetic relationship between the OTUs was
determined by application of FASTTREE to the PyNAST66 alignment of the
representative sequences with the Greengenes core-set alignment template. The
obtained phylogenetic tree and abundance tables were used to calculate unweighted
and weighted UniFrac b diversity indices67. The OTU absolute abundance table
and UniFrac b diversity matrices were extracted from the pipeline for further
analysis in the R statistical programming environment59.

Microbiota clustering. We followed the approach of Arumugam et al.20 to cluster
the microbial communities using the partitioning around medoids method68 on the
square root of the Jensen–Shannon divergence distances. The Calinski–Harabasz
index69 was used to establish the optimal number of clusters. The clustering was
visualized on the principal coordinate analyses using R package ade4 (ref. 70).

Microbiota maturity analysis. A random forests17 regression model was trained
on the control microbiota over the course of the experiment to predict
chronological age as a function of microbial composition, as described18. Each
model was built growing 10,000 trees per forest and n/3 variables (OTUs)
randomly sampled at each split, where n is the total number of OTUs in each
model. The model was first generated using all OTUs, then refined using 100-fold
cross-validation to determine the minimum number of predictive OTUs required
to minimize model error, based on % decrease in mean square error. From this, 42
OTUs were selected to train the final model and explained 81.3% of the total
variation of the model. OTU importance was ranked by the % increase in mean
square error that occurs when that OTU is removed from the model. The maturity
index model was used to predict day of life based on microbiota composition. The
mouse age predicted by the model (microbiota age) was used to calculated
microbial maturity and MAZ as described18, using the following formulae:

Microbial maturity (MM)¼microbiota age�median microbiota age of control
mice of similar age.

MAZ¼MM/s.d. of microbiota age of control mice of similar age.
Significant differences in average MAZ for control and PAT mice at each time

point were calculated with one-way ANOVA, followed by Fisher’s least significant

difference tests with false-discovery rate error correction. OTU relative abundances
were plotted on a heatmap using R package heatmap.2.

Antimicrobial resistance gene analysis. Host contamination free and high-
quality metagenomic shotgun reads were aligned to the Antibiotic Resistance
Genes Database (http://ardb.cbcb.umd.edu/) using RAPSearch2 (http://omics.in-
formatics.indiana.edu/mg/RAPSearch2/), a translated alignment tool. Resistance
gene reads were defined if reads were at least 90% identity to the reference at amino
acid level and 75% of the read length was mapped to the reference.
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