6,986 research outputs found
Random Graph Models with Hidden Color
We demonstrate how to generalize two of the most well-known random graph
models, the classic random graph, and random graphs with a given degree
distribution, by the introduction of hidden variables in the form of extra
degrees of freedom, color, applied to vertices or stubs (half-edges). The color
is assumed unobservable, but is allowed to affect edge probabilities. This
serves as a convenient method to define very general classes of models within a
common unifying formalism, and allowing for a non-trivial edge correlation
structure.Comment: 17 pages, 2 figures; contrib. to the Workshop on Random Geometry in
Krakow, May 200
Radio and X-ray Observations of the Type Ic SN 2007gr Reveal an Ordinary, Non-relativistic Explosion
We present extensive radio and X-ray observations of the nearby Type Ic SN
2007gr in NGC 1058 obtained with the Very Large Array and the Chandra X-ray
Observatory and spanning 5 to 150 days after explosion. Through our detailed
modeling of these data, we estimate the properties of the blastwave and the
circumstellar environment. We find evidence for a freely-expanding and
non-relativistic explosion with an average blastwave velocity, v~0.2c, and a
total internal energy for the radio emitting material of E ~ 2 x 10^46 erg
assuming equipartition of energy between electrons and magnetic fields
(epsilon_e=epsilon_B=0.1). The temporal and spectral evolution of the radio
emission points to a stellar wind-blown environment shaped by a steady
progenitor mass loss rate of Mdot ~ 6 x 10^-7 solar masses per year (wind
velocity, v_w=10^3 km/s). These parameters are fully consistent with those
inferred for other SNe Ibc and are in line with the expectations for an
ordinary, homologous SN explosion. Our results are at odds with those of Paragi
et al. (2010) who recently reported evidence for a relativistic blastwave in SN
2007gr based on their claim that the radio emission was resolved away in a low
signal-to-noise Very Long Baseline Interferometry (VLBI) observation. Here we
show that the exotic physical scenarios required to explain the claimed
relativistic velocity -- extreme departures from equipartition and/or a highly
collimated outflow -- are excluded by our detailed Very Large Array radio
observations. Moreover, we present an independent analysis of the VLBI data and
propose that a modest loss of phase coherence provides a more natural
explanation for the apparent flux density loss which is evident on both short
and long baselines. We conclude that SN 2007gr is an ordinary Type Ibc
supernova.Comment: 14 pages, 6 figures, submitted to Ap
Deterministic Annealing and Nonlinear Assignment
For combinatorial optimization problems that can be formulated as Ising or
Potts spin systems, the Mean Field (MF) approximation yields a versatile and
simple ANN heuristic, Deterministic Annealing. For assignment problems the
situation is more complex -- the natural analog of the MF approximation lacks
the simplicity present in the Potts and Ising cases. In this article the
difficulties associated with this issue are investigated, and the options for
solving them discussed. Improvements to existing Potts-based MF-inspired
heuristics are suggested, and the possibilities for defining a proper
variational approach are scrutinized.Comment: 15 pages, 3 figure
The Unique Signature of Shell Curvature in Gamma-Ray Bursts
As a result of spherical kinematics, temporal evolution of received gamma-ray
emission should demonstrate signatures of curvature from the emitting shell.
Specifically, the shape of the pulse decay must bear a strict dependence on the
degree of curvature of the gamma-ray emitting surface. We compare the spectral
evolution of the decay of individual GRB pulses to the evolution as expected
from curvature. In particular, we examine the relationship between photon flux
intensity (I) and the peak of the \nu F\nu distribution (E_{peak}) as predicted
by colliding shells. Kinematics necessitate that E_{peak} demonstrate a
power-law relationship with I described roughly as: I=E_{peak}^{(1-\zeta)}
where \zeta represents a weighted average of the low and high energy spectral
indices. Data analyses of 24 BATSE gamma-ray burst pulses provide evidence that
there exists a robust relationship between E_{peak} and I in the decay phase.
Simulation results, however, show that a sizable fraction of observed pulses
evolve faster than kinematics allow. Regardless of kinematic parameters, we
found that the existence of curvature demands that the I - E_{peak} function
decay be defined by \sim (1-\zeta). Efforts were employed to break this
curvature dependency within simulations through a number of scenarios such as
anisotropic emission (jets) with angular dependencies, thickness values for the
colliding shells, and various cooling mechanisms. Of these, the only method
successful in dominating curvature effects was a slow cooling model. As a
result, GRB models must confront the fact that observed pulses do not evolve in
the manner which curvature demands.Comment: 3 pages, To appear in Proc. from the 2nd Workshop on Gamma-Ray Bursts
in the Afterglow Er
The Lund Fragmentation Process for a Multi-gluon String According to the Area Law
The Lund Area Law describes the probability for the production of a set of
colourless hadrons from an initial set of partons, in the Lund string
fragmentation model. In this paper we will present a general method to
implement the Area Law for a multi-gluon string state. The partonic states are
in general given by a perturbative QCD cascade and are consequently defined
only down to a cutoff in the energy momentum fluctuations. We will show that
our method defines the states down to the hadronic mass scale inside an
analytically calculable scenario.
We will then show that there is a differential version of our process which
is closely related to the generalised rapidity range \lambda, which has been
used as a measure on the partonic states. We identify \lambda as the area
spanned between the directrix curve (the curve given by the parton energy
momentum vectors laid out in colour order, which determines the string surface)
and the average curve (to be called the P-curve) of the stochastic X-curves
(curves obtained when the hadronic energy-momentum vectors are laid out in rank
order). Finally we show that from the X-curve corresponding to a particular
stochastic fragmentation situation it is possible to reproduce the directrix
curve (up to one starting vector and a set of sign choices, one for each
hadron).Comment: 1 title page + 36 pages, 20 figure
SN 2007bg: The Complex Circumstellar Environment Around One of the Most Radio-Luminous Broad-Lined Type Ic Supernovae
In this paper we present the results of the radio light curve and X-ray
observations of broad-lined Type Ic SN 2007bg. The light curve shows three
distinct phases of spectral and temporal evolution, implying that the SNe shock
likely encountered at least 3 different circumstellar medium regimes. We
interpret this as the progenitor of SN 2007bg having at least two distinct
mass-loss episodes (i.e., phases 1 and 3) during its final stages of evolution,
yielding a highly-stratified circumstellar medium. Modelling the phase 1 light
curve as a freely-expanding, synchrotron-emitting shell, self-absorbed by its
own radiating electrons, requires a progenitor mass-loss rate of
\dot{M}~1.9x10^{-6}(v_{w}/1000 km s^{-1}) Solar masses per year for the last
t~20(v_{w}/1000 km s^{-1}) yr before explosion, and a total energy of the radio
emitting ejecta of E\sim1x10^{48} erg after 10 days from explosion. This places
SN 2007bg among the most energetic Type Ib/c events. We interpret the second
phase as a sparser "gap" region between the two winds stages. Phase 3 shows a
second absorption turn-on before rising to a peak luminosity 2.6 times higher
than in phase 1. Assuming this luminosity jump is due to a circumstellar medium
density enhancement from a faster previous mass-loss episode, we estimate that
the phase 3 mass-loss rate could be as high as \dot{M}<~4.3x10^{-4}(v_{w}/1000
km s^{-1}) Solar masses per year. The phase 3 wind would have transitioned
directly into the phase 1 wind for a wind speed difference of ~2. In summary,
the radio light curve provides robust evidence for dramatic global changes in
at least some Ic-BL progenitors just prior (~10-1000 yr) to explosion. The
observed luminosity of this SN is the highest observed for a
non-gamma-ray-burst broad-lined Type Ic SN, reaching L_{8.46 GHz}~1x10^{29} erg
Hz^{-1} s^{-1}, ~567 days after explosion.Comment: 11 pages, 5 figures, accepted for publication in MNRA
ArgoNeuT: A Liquid Argon Time Projection Chamber Test in the NuMI Beamline
Liquid Argon Time Projection Chamber detectors are ideally suited for
studying neutrino interactions and probing the parameters that characterize
neutrino oscillations. The ability to drift ionization particles over long
distances in purified argon and to trigger on abundant scintillation light
allows for excellent particle identification and triggering capability. In
these proceedings the details of the ArgoNeuT test-beam project will be
presented after a brief introduction to the detector technique. ArgoNeuT is a
175 liter detector exposed to Fermilab's NuMI neutrino beamline. The first
neutrino interactions observed in ArgoNeuT will be presented, along with
discussion of the various physics analyses to be performed on this data sample.Comment: To be published in the proceedings of DPF-2009, Detroit, MI, July
2009, eConf C09072
- …
