37 research outputs found

    Investigating optimum sample preparation for infrared spectroscopic serum diagnostics

    Get PDF
    Biofluids, such as serum and plasma, represent an ideal medium for the diagnosis of disease due to their ease of collection, that can be performed worldwide, and their fundamental involvement in human function. The ability to diagnose disease rapidly with high sensitivity and specificity is essential to exploit advances in new treatments, in addition the ability to rapidly profile disease without the need for large scale medical equipment (e.g. MRI, CT) would enable closer patient monitoring with reductions in mortality and morbidity. Due to these reasons vibrational spectroscopy has been investigated as a diagnostic tool and has shown great promise for serum spectroscopic diagnostics. However, the optimum sample preparation, optimum sampling mode and the effect of sample preparation on the serum spectrum are unknown. This paper examines repeatability and reproducibility of attenuated total reflection (ATR) compared to transmission sampling modes and their associated serum sample preparation with spectral standard deviation of 0.0015 (post pre-processing) achievable for both sampling modes proving the collection of robust spectra. In addition this paper investigates the optimum serum sample dilution factor for use in high throughput transmission mode analysis with a 3-fold dilution proving optimum and shows the use of ATR and transmission mode spectroscopy to illuminate similar discriminatory differences in a patient study. These fundamental studies provide proof of robust spectral collection that will be required to enable clinical translation of serum spectroscopic diagnostics

    Developing and understanding biofluid vibrational spectroscopy : a critical review

    Get PDF
    Vibrational spectroscopy can provide rapid, label-free, and objective analysis for the clinical domain. Spectroscopic analysis of biofluids such as blood components (e.g. serum and plasma) and others in the proximity of the diseased tissue or cell (e.g. bile, urine, and sputum) offers non-invasive diagnostic/monitoring possibilities for future healthcare that are capable of rapid diagnosis of diseases via specific spectral markers or signatures. Biofluids offer an ideal diagnostic medium due to their ease and low cost of collection and daily use in clinical biology. Due to the low risk and in vasiveness of their collection they are widely welcomed by patients as a diagnostic medium. This review under scores recent research within the field of biofluid spectroscopy and its use in myriad pat hologies such as cancer and infectious diseases. It highlights current progresses, advents, and pitfalls within the field and discusses future spectroscopic clinical potentials for diagnostics. The requirements and issues surrounding clinical translation are also considered

    A microscopic and macroscopic study of aging collagen on its molecular structure, mechanical properties, and cellular response

    Get PDF
    During aging, collagen structure changes, detrimentally affecting tissues' biophysical and biomechanical properties due to an accumulation of advanced glycation end-products (AGEs). In this investigation, we conducted a parallel study of microscopic and macroscopic properties of different-aged collagens from newborn to 2-yr-old rats, to examine the effect of aging on fibrillogenesis, mechanical and contractile properties of reconstituted hydrogels from these collagens seeded with or without fibroblasts. In addition to fibrillogenesis of collagen under the conventional conditions, some fibrillogenesis was conducted alongside a 12-T magnetic field, and gelation rate and AGE content were measured. A nondestructive indentation technique and optical coherence tomography were used to determine the elastic modulus and dimensional changes, respectively. It was revealed that in comparison to younger specimens, older collagens exhibited higher viscosity, faster gelation rates, and a higher AGE-specific fluorescence. Exceptionally, only young collagens formed highly aligned fibrils under magnetic fields. The youngest collagen demonstrated a higher elastic modulus and contraction in comparison to the older collagen. We conclude that aging changes collagen monomer structure, which considerably affects the fibrillogenesis process, the architecture of the resulting collagen fibers and the global network, and the macroscopic properties of the formed constructs

    The effect of collagen ageing on its structure and cellular behaviour

    Get PDF
    Collagen is the most important component in extracellular matrix (ECM) and plays a pivotal role in individual tissue function in mammals. During ageing, collagen structure changes, which can detrimentally affect its biophysical and biomechanical properties due to an accumulation of advanced glycation end-products (AGEs). AGEs have been linked to non-enzymatic cross-linking of proteins resulting in the alteration of mechanical properties of the tissue. In this study we investigate the influence of different aged collagens on the mechanical and contractile properties of reconstituted hydrogel constructs seeded with corneal stromal fibroblasts. A non-destructive indentation technique and optical coherence tomography (OCT) are used to determine the elastic modulus and dimensional changes respectively. It is revealed that the youngest collagen constructs have a higher elastic modulus and increased contraction compared to the older collagen. These results provide new insights into the relationship between collagen molecular structures and their biomechanical properties

    Effect of hemolysis on Fourier transform infrared and Raman spectra of blood plasma

    Get PDF
    Hemolysis is a very common phenomenon and is referred as the release of intracellular components from red blood cells to the extracellular fluid. Hemolyzed samples are often rejected in clinics due to the interference of hemoglobin and intracellular components in laboratory measurements. Plasma and serum based vibrational spectroscopy studies are extensively applied to generate spectral biomarkers for various diseases. However, no studies have reported the effect of hemolysis in blood based vibrational spectroscopy studies. This study was undertaken to evaluate the effect of hemolysis on infrared and Raman spectra of blood plasma. In this study, prostate cancer plasma samples (n = 30) were divided into three groups (nonhemolyzed, mildly hemolyzed, and moderately hemolyzed) based on the degree of hemolysis and FTIR and Raman spectra were recorded using high throughput (HT)-FTIR and HT-Raman spectroscopy. Discrimination was observed between the infrared and Raman spectra of nonhemolyzed and hemolyzed plasma samples using principal component analysis. A classical least square fitting analysis showed differences in the weighting of pure components in nonhemolyzed and hemolyzed plasma samples. Therefore, it is worth to consider the changes in spectral features due to hemolysis when comparing the results within and between experiments

    The Ratio 1660/1690 cm−1 Measured by Infrared Microspectroscopy Is Not Specific of Enzymatic Collagen Cross-Links in Bone Tissue

    Get PDF
    In postmenopausal osteoporosis, an impairment in enzymatic cross-links (ECL) occurs, leading in part to a decline in bone biomechanical properties. Biochemical methods by high performance liquid chromatography (HPLC) are currently used to measure ECL. Another method has been proposed, by Fourier Transform InfraRed Imaging (FTIRI), to measure a mature PYD/immature DHLNL cross-links ratio, using the 1660/1690 cm−1 area ratio in the amide I band. However, in bone, the amide I band composition is complex (collagens, non-collagenous proteins, water vibrations) and the 1660/1690 cm−1 by FTIRI has never been directly correlated with the PYD/DHLNL by HPLC. A study design using lathyritic rats, characterized by a decrease in the formation of ECL due to the inhibition of lysyl oxidase, was used in order to determine the evolution of 1660/1690 cm−1 by FTIR Microspectroscopy in bone tissue and compare to the ECL quantified by HPLC. The actual amount of ECL was quantified by HPLC on cortical bone from control and lathyritic rats. The lathyritic group exhibited a decrease of 78% of pyridinoline content compared to the control group. The 1660/1690 cm−1 area ratio was increased within center bone compared to inner bone, and this was also correlated with an increase in both mineral maturity and mineralization index. However, no difference in the 1660/1690 cm−1 ratio was found between control and lathyritic rats. Those results were confirmed by principal component analysis performed on multispectral infrared images. In bovine bone, in which PYD was physically destructed by UV-photolysis, the PYD/DHLNL (measured by HPLC) was strongly decreased, whereas the 1660/1690 cm−1 was unmodified. In conclusion, the 1660/1690 cm−1 is not related to the PYD/DHLNL ratio, but increased with age of bone mineral, suggesting that a modification of this ratio could be mainly due to a modification of the collagen secondary structure related to the mineralization process

    Infrarouge et Raman : de la spectroscopie à l’imagerie

    No full text
    International audienceLes spectroscopies infrarouge et Raman décrites en détails dans les chapitres précédents permettent donc de caractériser finement les objets sondés. Si ces objets sont hétérogènes, cette caractérisation sera différente en fonction de l'endroit sondé. Plusieurs mesures ponctuelles permettront d'affiner la réponse, mais souvent, cette description restera incomplète. L'hétérogénéité peut être de différentes origines: échantillons constitués de différentes phases, différentes compositions moléculaires, gradients de concentration, variations locales de propriétés (contraintes mécaniques, indices optiques, température, etc.). Les spectroscopistes ont alors développé des techniques d’imagerie, qui trouveront naturellement leur intérêt dès lors que les hétérogénéités de compositions ou de propriétés ont des dimensions comparables aux résolutions spatiales de ces méthodes

    Fourier Transform Infrared and Raman Spectroscopy for Characterization of Listeria monocytogenes Strains

    No full text
    The purpose of this study was to characterize the variation in biochemical composition of 89 strains of Listeria monocytogenes with different susceptibilities towards sakacin P, using Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy. The strains were also analyzed using amplified fragment length polymorphism (AFLP) analysis. Based on their susceptibilities to sakacin P, the 89 strains have previously been divided into two groups. Using the FTIR spectra and AFLP data, the strains were basically differentiated into the same two groups. Analyses of the FTIR and Raman spectra revealed that the strains in the two groups contained differences in the compositions of carbohydrates and fatty acids. The relevance of the variation in the composition of carbohydrates with respect to the variation in the susceptibility towards sakacin P for the L. monocytogenes strains is discussed
    corecore