50 research outputs found

    Antimicrobial Activity of Bee Venom and Melittin against Borrelia burgdorferi

    Get PDF
    Lyme disease is a tick-borne, multi-systemic disease, caused by the bacterium Borrelia burgdorferi. Though antibiotics are used as a primary treatment, relapse often occurs after the discontinuation of antimicrobial agents. The reason for relapse remains unknown, however previous studies suggest the possible presence of antibiotic resistant Borrelia round bodies, persisters and attached biofilm forms. Thus, there is an urgent need to find antimicrobial agents suitable to eliminate all known forms of B. burgdorferi. In this study, natural antimicrobial agents such as Apis mellifera venom and a known component, melittin, were tested using SYBR Green I/PI, direct cell counting, biofilm assays combined with LIVE/DEAD and atomic force microscopy methods. The obtained results were compared to standalone and combinations of antibiotics such as Doxycycline, Cefoperazone, Daptomycin, which were recently found to be effective against Borrelia persisters. Our findings showed that both bee venom and melittin had significant effects on all the tested forms of B. burgdorferi. In contrast, the control antibiotics when used individually or even in combinations had limited effects on the attached biofilm form. These findings strongly suggest that whole bee venom or melittin could be effective antimicrobial agents for B. burgdorferi; however, further research is necessary to evaluate their effectiveness in vivo, as well as their safe and effective delivery method for their therapeutic use

    Influence of Tick and Mammalian Physiological Temperatures on Borrelia Burgdorferi Biofilms

    Get PDF
    The spirochaete bacterium Borrelia burgdorferi sensu lato is the aetiologic agent of Lyme disease. Borrelia is transmitted to mammals through tick bite and is adapted to survive at tick and mammalian physiological temperatures. We have previously shown that B. burgdorferi can exist in different morphological forms, including the antibiotic-resistant biofilm form, in vitro and in vivo. B. burgdorferi forms aggregates in ticks as well as in humans, indicating potential of biofilm formation at both 23 and 37 °C. However, the role of various environmental factors that influence Borrelia biofilm formation remains unknown. In this study, we investigated the effect of tick (23 °C), mammalian physiological (37 °C) and standard in vitro culture (33 °C) temperatures with the objective of elucidating the effect of temperature on Borrelia biofilm phenotypes invitro using two B. burgdorferi sensu stricto strains (B31 and 297). Our findings show increased biofilm quantity, biofilm size, exopolysaccharide content and enhanced adherence as well as reduced free spirochaetes at 37 °C for both strains, when compared to growth at 23 and 33 °C. There were no significant variations in the biofilm nano-topography and the type of extracellular polymeric substance in Borrelia biofilms formed at all three temperatures. Significant variations in extracellular DNA content were observed in the biofilms of both strains cultured at the three temperatures. Our results indicate that temperature is an important regulator of Borrelia biofilm development, and that the mammalian physiological temperature favours increased biofilm formation in vitro compared to tick physiological temperature and in vitro culture temperature

    Evidence of in Vivo Existence of Borrelia Biofilm in Borrelial Lymphocytomas

    Get PDF
    Lyme borreliosis, caused by the spirochete Borrelia burgdorferi sensu lato, has grown into a major public health problem. We recently identified a novel morphological form of B. burgdorferi, called biofilm, a structure that is well known to be highly resistant to antibiotics. However, there is no evidence of the existence of Borrelia biofilm in vivo; therefore, the main goal of this study was to determine the presence of Borrelia biofilm in infected human skin tissues. Archived skin biopsy tissues from borrelial lymphocytomas (BL) were reexamined for the presence of B. burgdorferi sensu lato using Borrelia-specific immunohistochemical staining (IHC), fluorescent in situ hybridization, combined fluorescent in situ hybridization (FISH)—IHC, polymerase chain reaction (PCR), and fluorescent and atomic force microscopy methods. Our morphological and histological analyses showed that significant amounts of Borrelia-positive spirochetes and aggregates exist in the BL tissues. Analyzing structures positive for Borrelia showed that aggregates, but not spirochetes, expressed biofilm markers such as protective layers of different mucopolysaccharides, especially alginate. Atomic force microscopy revealed additional hallmark biofilm features of the Borrelia/alginate-positive aggregates such as inside channels and surface protrusions. In summary, this is the first study that demonstrates the presence of Borrelia biofilm in human infected skin tissues

    User-Centric Beam Selection and Precoding Design for Coordinated Multiple-Satellite Systems

    Full text link
    This paper introduces a joint optimization framework for user-centric beam selection and linear precoding (LP) design in a coordinated multiple-satellite (CoMSat) system, employing a Digital-Fourier-Transform-based (DFT) beamforming (BF) technique. Regarding serving users at their target SINRs and minimizing the total transmit power, the scheme aims to efficiently determine satellites for users to associate with and activate the best cluster of beams together with optimizing LP for every satellite-to-user transmission. These technical objectives are first framed as a complex mixed-integer programming (MIP) challenge. To tackle this, we reformulate it into a joint cluster association and LP design problem. Then, by theoretically analyzing the duality relationship between downlink and uplink transmissions, we develop an efficient iterative method to identify the optimal solution. Additionally, a simpler duality approach for rapid beam selection and LP design is presented for comparison purposes. Simulation results underscore the effectiveness of our proposed schemes across various settings

    Infectious Diseases, Social, Economic and Political Crises, Anthropogenic Disasters and Beyond: Venezuela 2019 – Implications for Public Health and Travel Medicine

    Get PDF
    During last months, there have been a significant increase in the evidences showing the catastrophic health situation in Venezuela. There are multiple epidemics, increase in emerging and reemerging infectious, tropical and parasitic diseases as consequences of the social, economic and political crises, which would be considered today a clearly anthropogenic disaster. Venezuela is facing in 2019, the worse sanitary conditions, with multiple implications for public health and travel medicine. So far, from a global perspective, this situation will be an impediment for the achievement of the sustainable development goals (SDG) in 2030. In this multiauthor review, there is a comprehensive analysis of the situation for infectious diseases, non-communicable diseases, their impact in the Americas region, given the migration crisis as well as the comparative status of the SDG 2030. This discussion can provide input for prioritizing emerging health problems and establish a future agenda

    Infectious Diseases, Social, Economic and Political Crises, Anthropogenic Disasters and Beyond: Venezuela 2019 – Implications for Public Health and Travel Medicine

    Get PDF
    During last months, there have been a significant increase in the evidences showing the catastrophic health situation in Venezuela. There are multiple epidemics, increase in emerging and reemerging infectious, tropical and parasitic diseases as consequences of the social, economic and political crises, which would be considered today a clearly anthropogenic disaster. Venezuela is facing in 2019, the worse sanitary conditions, with multiple implications for public health and travel medicine. So far, from a global perspective, this situation will be an impediment for the achievement of the sustainable development goals (SDG) in 2030. In this multiauthor review, there is a comprehensive analysis of the situation for infectious diseases, non-communicable diseases, their impact in the Americas region, given the migration crisis as well as the comparative status of the SDG 2030. This discussion can provide input for prioritizing emerging health problems and establish a future agenda
    corecore