2 research outputs found

    The Leucine-Responsive Regulatory Protein, Lrp, Modulates Microcin J25 Intrinsic Resistance in Escherichia coli by Regulating Expression of the YojI Microcin Exporter▿

    Get PDF
    Many Escherichia coli K-12 strains display an intrinsic resistance to the peptide antibiotic microcin J25. In this study, we present results showing that the leucine-responsive regulatory protein, Lrp, is involved in this phenotype by acting as a positive regulator of YojI, a chromosomally encoded efflux pump which expels microcin out of cells. Exogenous leucine antagonizes the effect of Lrp, leading to a diminished expression of the pump and an increased susceptibility to microcin J25

    Repurposing doxycycline for synucleinopathies: remodelling of α-synuclein oligomers towards non-toxic parallel beta-sheet structured species

    No full text
    International audienceSynucleinophaties are progressive neurodegenerative disorders with no cure to date. An attractive strategy to tackle this problem is repurposing already tested safe drugs against novel targets. In this way, doxycycline prevents neurodegeneration in Parkinson models by modulating neuroinflammation. However, anti-inflammatory therapy per se is insufficient to account for neuroprotection. Herein we characterise novel targets of doxycycline describing the structural background supporting its effectiveness as a neuroprotector at subantibiotic doses. Our results show that doxycycline reshapes α-synuclein oligomers into off-pathway, high-molecular-weight species that do not evolve into fibrils. Off-pathway species present less hydrophobic surface than on-pathway oligomers and display different ÎČ-sheet structural arrangement. These structural changes affect the α-synuclein ability to destabilize biological membranes, cell viability, and formation of additional toxic species. Altogether, these mechanisms could act synergically giving novel targets for repurposing this drug
    corecore