645 research outputs found
Misleading Policy Messages from the Period TFR: Should We Stop Using It?
Public discussions about fertility trends and policies in developed countries refer almost exclusively to the period Total Fertility Rate (TFR), which is commonly misinterpreted as the "mean number of children per woman" as if it were a cohort measure of fertility. We argue that the use of this indicator frequently leads to incorrect interpretations of period fertility levels and trends, resulting in distorted policy conclusions and, potentially, in misguided policies. We illustrate this point with four policy-relevant examples, drawn from contemporary Europe. These illustrations show that the TFR (a) inflates the presumed gap between fertility intentions and realised fertility, (b) erroneously suggests a significant fertility increase in many countries of Europe after the year 2000, (c) often exaggerates the level of immigrants' fertility and (d) frequently suggests that family-related policies which led to shorter birth spacing in fact brought an upward swing in fertility level. We argue that there seems to be no policy-relevant question for which the period TFR would be the indicator of choice to be preferred over other existing measures, which range from measures related to future cohort size (total number of births) to sophisticated fertility indexes controlling for age, parity, duration since previous birth and tempo effect. Hence, there is a strong case for stopping the use of the period TFR as a one-fits-all fertility indicator which is now common practice
Asymmetry dependence of proton correlations
A dispersive optical model analysis of p+40Ca and p+48Ca interactions has
been carried out. The real and imaginary potentials have been constrained from
fits to elastic scattering data, reaction cross sections, and level properties
of valence hole states deduced from (e,e'p) data. The surface imaginary
potential was found to be larger overall and the gap in this potential on
either side of the Fermi energy was found to be smaller for the neutron-rich
p+48Ca system. These results imply that protons with energies near the Fermi
surface experience larger correlations with increasing asymmetry.Comment: 4 pages, 5 figure
Isospin dependence of nucleon Correlations in ground state nuclei
The dispersive optical model (DOM) as presently implemented can investigate
the isospin (nucleon asymmetry) dependence of the Hartree-Fock-like potential
relevant for nucleons near the Fermi energy. Data constraints indicate that a
Lane-type potential adequately describes its asymmetry dependence. Correlations
beyond the mean-field can also be described in this framework, but this
requires an extension that treats the non-locality of the Hartree-Fock-like
potential properly. The DOM has therefore been extended to properly describe
ground-state properties of nuclei as a function of nucleon asymmetry in
addition to standard ingredients like elastic nucleon scattering data and level
structure. Predictions of nucleon correlations at larger nucleon asymmetries
can then be made after data at smaller asymmetries constrain the potentials
that represent the nucleon self-energy. A simple extrapolation for Sn isotopes
generates predictions for increasing correlations of minority protons with
increasing neutron number. Such predictions can be investigated by performing
experiments with exotic beams. The predicted neutron properties for the double
closed-shell 132Sn nucleus exhibit similar correlations as those in 208Pb.
Future relevance of these studies for understanding the properties of all
nucleons, including those with high momentum, and the role of three-body forces
in nuclei are briefly discussed. Such an implementation will require a proper
treatment of the non-locality of the imaginary part of the potentials and a
description of high-momentum nucleons as experimentally constrained by the
(e,e'p) reactions performed at Jefferson Lab.Comment: 7 pages and 7 figure
Retardation of Particle Evaporation from Excited Nuclear Systems Due to Thermal Expansion
Particle evaporation rates from excited nuclear systems at equilibrium matter
density are studied within the Harmonic-Interaction Fermi Gas Model (HIFGM)
combined with Weisskopf's detailed balance approach. It is found that thermal
expansion of a hot nucleus, as described quantitatively by HIFGM, leads to a
significant retardation of particle emission, greatly extending the validity of
Weisskopf's approach. The decay of such highly excited nuclei is strongly
influenced by surface instabilities
Properties of Umbral Dots as Measured from the New Solar Telescope Data and MHD Simulations
We studied bright umbral dots (UDs) detected in a moderate size sunspot and
compared their statistical properties to recent MHD models. The study is based
on high resolution data recorded by the New Solar Telescope at the Big Bear
Solar Observatory and 3D MHD simulations of sunspots. Observed UDs, living
longer than 150 s, were detected and tracked in a 46 min long data set, using
an automatic detection code. Total 1553 (620) UDs were detected in the
photospheric (low chromospheric) data. Our main findings are: i) none of the
analyzed UDs is precisely circular, ii) the diameter-intensity relationship
only holds in bright umbral areas, and iii) UD velocities are inversely related
to their lifetime. While nearly all photospheric UDs can be identified in the
low chromospheric images, some small closely spaced UDs appear in the low
chromosphere as a single cluster. Slow moving and long living UDs seem to exist
in both the low chromosphere and photosphere, while fast moving and short
living UDs are mainly detected in the photospheric images. Comparison to the 3D
MHD simulations showed that both types of UDs display, on average, very similar
statistical characteristics. However, i) the average number of observed UDs per
unit area is smaller than that of the model UDs, and ii) on average, the
diameter of model UDs is slightly larger than that of observed ones.Comment: Accepted by the AP
Misleading policy messages derived from the period TFR: Should we stop using it?
Discussions about fertility in developed countries refer almost exclusively to the period Total Fertility Rate (TFR). We argue that the use of this indicator frequently leads to incorrect interpretation of period fertility levels and trends, resulting in distorted policy conclusions and, potentially, in misguided policies. We illustrate this with four policy-relevant examples, drawn from contemporary Europe. These illustrations show that the TFR (a) inflates the presumed gap between fertility intentions and realised fertility, (b) erroneously suggests a significant fertility increase in many countries of Europe after the year 2000, (c) often exaggerates the level of immigrants fertility and (d) frequently suggests that family-related policies which led to shorter birth spacing in fact brought an upward swing in fertility level. There seems to be no policy-relevant question for which the period TFR would be the indicator of choice to be preferred over other existing measures
Tidal effects and the Proximity decay of nuclei
We examine the decay of the 3.03 MeV state of Be evaporated from an
excited projectile-like fragment following a peripheral heavy-ion collision.
The relative energy of the daughter particles exhibits a dependence on
the decay angle of the Be, indicative of a tidal effect. Comparison of
the measured tidal effect with a purely Coulomb model suggests the influence of
a measurable nuclear proximity interaction.Comment: 5 pages, 4 figure
Nonlocal extension of the dispersive-optical-model to describe data below the Fermi energy
Present applications of the dispersive-optical-model analysis are restricted
by the use of a local but energy-dependent version of the generalized
Hartree-Fock potential. This restriction is lifted by the introduction of a
corresponding nonlocal potential without explicit energy dependence. Such a
strategy allows for a complete determination of the nucleon propagator below
the Fermi energy with access to the expectation value of one-body operators
(like the charge density), the one-body density matrix with associated natural
orbits, and complete spectral functions for removal strength. The present
formulation of the dispersive optical model (DOM) therefore allows the use of
elastic electron-scattering data in determining its parameters. Application to
Ca demonstrates that a fit to the charge radius leads to too much
charge near the origin using the conventional assumptions of the functional
form of the DOM. A corresponding incomplete description of high-momentum
components is identified, suggesting that the DOM formulation must be extended
in the future to accommodate such correlations properly. Unlike the local
version, the present nonlocal DOM limits the location of the deeply-bound hole
states to energies that are consistent with (\textit{e,e}\textit{p})
and (\textit{p,2p}) data.Comment: 14 pages, 10 figures, submitted to Physical Review
- âŠ