30 research outputs found

    Heat Input Influence on the Fatigue Life of Welds from Steel S460MC

    Get PDF
    Fine-grained steels belong to the progressive materials, which are increasingly used in the production of welded structures subjected to both static and dynamic loads. These are unalloyed or microalloyed steels hardened mainly by the grain-boundary strengthening mechanism. Such steels require specific welding procedures, especially in terms of the heat input value. At present, there are studies of the welding influence on the change of thermomechanically processed steels’ mechanical properties, however mainly under static loading. The paper is therefore focused on the assessment of the welding effect under dynamic loading of welded joints. In the experimental part was determined the influence of five different heat input values on the change of weld fatigue life. As a result, there is both determination of five S-N curves for the double-sided fillet welds from the thermomechanically processed fine-grained steel S460MC and the quantification of the main influences reducing the fatigue life of the joint

    Investigation of new brominated and organophosphorous flame retardants in Svalbard benthic marine food web; FlammePlank

    Get PDF
    Project manager Pernilla CarlssonThe aim of this pilot-study was to use silicone rubber-based passive samplers to measure novel brominated flame retardants (nBFRs), polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DP) in seawater and air around Longyearbyen as well as investigate the presence of those compounds in sediment and biota (amphipods, Gammarus spp.) nearby Longyearbyen. Passive samplers require no electricity and provide an integrated picture of the levels of the targeted compounds over time. The results were combined with the sampled sediment and Gammarus spp. to assess concentrations in the environment. Out of all substances under study, PBDE-47 and -99, α- and β- tetrabromoethylcyclohexane (TBECH), syn- and anti-DP were detected in all investigated matrices. Freely dissolved water concentrations of ΣDPs (3 pg/L) were in line with recent Arctic studies, while ΣPBDEs (3 pg/L) were comparable to urban rivers in southern Norway. Nevertheless, for some compounds, especially the lighter and most volatile ones, long-range transport is most likely a more important contribution to observed levels than local sources. For other compounds, e.g. PBDEs, local sources might still play a role for the load of contaminants into the surrounding environment. The present study is the first to report a suit of nBFRs and DPs in Arctic benthic fauna. Many of the nBFRs and DPs were detected in sediment and in the amphipods. We recommend further studies with respect to measurements of concentrations over time, and in other species as well, to better understand whether the nBFRs and DPs are common in the marine environment on Svalbard. We recommend that local sources of flame retardants in remote areas receive more attention in the future.Svalbard miljøvernfondpublishedVersio

    Application possibilities of low-temperature repairs by welding for creep-resistance material GX12CrMoVNb9-1

    No full text

    Assessment of the Heat Input Effect on the Distribution of Temperature Cycles in the HAZ of S460MC Welds in MAG Welding

    No full text
    Temperature cycles generated during welding have a significant effect on the changes in the HAZ of welds, regardless of whether these are changes in structure or mechanical properties; however, it is problematic to obtain temperature cycles with sufficient accuracy across the entire HAZ so that they can be generally taken and used in welding simulations and for real experiments of processes occurring in HAZ. In particular, for a study in a specific location, it is important to know the maximum temperature of the cycle and the cooling rate defined mainly by the parameter t8/5. No studies in which anybody tries to find a mathematical description defining the basic parameters of temperature cycles in the HAZ could be found in the performed research. Therefore, the study presented in this paper results in a mathematical description defining the dependence of achieved maximum temperature on the distance from the fusion line in the HAZ of S460MC welds and with heat input values in the interval from 8 to 14 kJ·cm−1. Moreover, this paper presents the influence of heat input value on the weld pool geometry, including the effect of heat input value on grain coarsening in the highly heated HAZ

    Determination of Grain Growth Kinetics and Assessment of Welding Effect on Properties of S700MC Steel in the HAZ of Welded Joints

    No full text
    The welding of fine-grained steels is a very specific technology because of the requirement for the heat input limit value. Applying temperature cycles results in an intense grain growth in a high-temperature heat-affected zone (HAZ). This has a significant effect on the changing of strength properties and impact values. The intensity of grain coarsening in the HAZ can be predicted based on the experimentally determined activation energy and material constant, both of which define grain growth kinetics. These quantities, together with real measured welding cycles, can be subsequently used during experiments to determine mechanical properties in a high-temperature HAZ. This paper shows a methodical procedure leading to the obtainment of the material quantities mentioned above that define the grain growth, both at fast and slow temperature cycles. These data were used to define the exposure temperature and the soaking time in a vacuum furnace to prepare test samples with grain sizes corresponding to the high-temperature HAZ of welded joints for the testing procedures. Simultaneously, by means of the thermo-mechanical simulator Gleeble 3500, testing samples were prepared which, due to a temperature gradient, created conditions comparable to those in the HAZ. The experiments were both carried out with the possibility of free sample dilatation and under a condition of zero dilation, which happens when the thermal expansion of a material is compensated by plastic deformation. It has been found that shape of the temperature cycle, maximal achieved cycle temperature, cooling rate, and, particularly, the time in which the sample is in the austenite region have significant effects on the resulting change of properties
    corecore