23 research outputs found

    Quantitative magnetic resonance characterization of the effect of physical training on skeletal muscle of the Ts65Dn mice, a model of Down syndrome

    Get PDF
    Down syndrome (DS) is characterized by muscle hypotonia and low muscle strength associated with motor dysfunction. Elucidation of the determinants of muscle weakness in DS would be relevant for therapeutic approaches aimed at treating/mitigating a physical disability with a strong impact on the quality of life in persons with DS. The Ts65Dn mice is a recognized mouse model of DS, with trisomic mice presenting gross motor and muscle phenotypes. The aim of this work was to assess the effect of physical exercise, a well-known tool to improve skeletal muscle condition, in the hindlimbs of trisomic and euploid male mice using quantitative magnetic resonance imaging (MRI). Magnetic resonance spectroscopy (MRS) metabolomics and histological fiber typing were used to further characterize the post-exercise muscle. Quantitative MRI showed not significantly different amounts of skeletal muscle in proximal hindlimbs in trisomic and euploid mice both at baseline and after physical exercise (P>0.05). Similar results were obtained for hindlimbs subfascia adipose tissue, and subcutaneous adipose tissue (P>0.05). MRS showed lower amounts of exercise-related metabolites (valine, isoleucine, leucine) in euploid vs. trisomic mice after exercise (P <=.0.05). The percentage of slow-twitch fibers was similar in the two genotypes (P>0.05). We conclude that in DS adapted physical exercise (one month of training) does not induce quantitative changes in skeletal muscle or fiber type composition therein; however, the metabolic response of skeletal muscle to exercise may be affected by trisomy. These findings prompt further research investigating the role of physical exercise as a cue to clarify the mechanisms of the muscular deficit found in DS

    Blueberry-Based Meals for Obese Patients with Metabolic Syndrome: A Multidisciplinary Metabolomic Pilot Study

    No full text
    A pilot study was carried out on five obese/overweight patients suffering from metabolic syndrome, with the aim to evaluate postprandial effects of high fat/high glycemic load meals enriched by blueberries. Postprandial urine samples were analyzed by 1H-NMR spectroscopy after 2 and 4 h from ingestion to identify potential markers of blueberry intake. Significant decrease of methylamines, acetoacetate, acetone and succinate, known indicators of type 2 diabetes mellitus, were observed after the intake of meals enriched with blueberries. On the other hand, an accumulation of p-hydroxyphenyl-acetic acid and 3-(3’-hydroxyphenyl)-3-hydropropionic acid originating from gut microbial dehydrogenation of proanthocyanidins and procyanidins was detected. Real-time PCR-analysis of mRNAs obtained from mononuclear blood cells showed significant changes in cytokine gene expression levels after meals integrated with blueberries. In particular, the mRNAs expression of interleukin-6 (IL-6) and Transforming Growth Factor-β (TGF-β), pro and anti-inflammation cytokines, respectively, significantly decreased and increased after blueberry supplementation, indicating a positive impact of blueberry ingestion in the reduction of risk of inflammation. The combined analysis of the urine metabolome and clinical markers represents a promising approach in monitoring the metabolic impact of blueberries in persons with metabolic syndrome

    1H-NMR Metabolic Profiling and Antioxidant Activity of Saffron (Crocus sativus) Cultivated in Lebanon

    No full text
    Despite the beneficial health properties shown by Lebanese saffron, its qualitative and quantitative composition has never been investigated before. In the present study, NMR spectroscopy, together with antioxidant activity assays, were applied to evaluate the chemical composition of saffron samples of different geographical origins (Lebanon, Italy, Iran, and India) and to categorize the Lebanese saffron for the first time. The distinction between Lebanese saffron and that produced in other countries was attributed to its higher linolenic and linoleic fatty acids, glucose and picrocrocin contents. Moreover, spices produced in three different regions of the Lebanese territory have been clearly differentiated. Saffron cultivated in the Qaa region displayed a high glucose, fatty acids and polyphenols content, whereas Hermel saffron exhibited the largest rate of picrocrocin and glycosylated carotenoids. Finally, samples from Baalbeck showed lower rates for the majority of metabolites. Moreover, Lebanese saffron showed a high antioxidant activity in ABTS and DPPH assays. A low dose of saffron extract (10 µg/mL) inhibited the growth of human lung adenocarcinoma cells, probably due to the high polyphenolic content. This study highlights the quality and peculiarity of Lebanese saffron cultivated in Northern Beqaa district and allows for a good discrimination between spices produced in relatively close territory

    A remarkably large phase-transition effect in a random copolymer of oligo(ethylene glycol) methyl ether methacrylate (OEGMA)500 induced by the photochemistry of the 2-(Hydroxyimino)aldehyde group

    No full text
    The effect of UV irradiation on the cloud points (CP) of aqueous solutions of a random 1:1 copolymer of oligo(ethylene glycol) methyl ether methacrylate (OEGMA500) and a 2-(hydroxyimino)aldehyde (HIA) functionalized methacrylate is presented. CPs are determined by visible spectroscopy and dynamic light scattering (DLS). 1H and 13C NMR experiments are carried out in D2O and DMSO-d6 on the polymer and on an HIA-functionalized model of the photoresponsive repeat unit. UV-irradiated solutions exhibit an unprecedented increase of the phase-separation temperature for an OEGMA photoresponsive copolymer (10–22 °C, depending on concentration and irradiation conditions). Phase separation is reversible with little hysteresis. With both pristine and irradiated polymer solutions, aggregate dimensions are <10 nm (DLS) at room temperature. Aggregates of >100 nm form at the CP and gradually grow as temperature increases, whereas the light-induced processes of the repeat unit model in DMSO-d6 are well identified (e.g., oxime E/Z isomerization and Norrish-Yang cyclization of the aldehyde moiety), it is not straightforward to extrapolate such behavior to the polymeric solution in water. The remarkably large phototriggered thermal effect in the present work motivates further investigations on the solvent-dependent photochemistry of HIA as a promising functional group for the synthesis of multi-stimuli responsive materials

    Byproducts of Globe Artichoke and Cauliflower Production as a New Source of Bioactive Compounds in the Green Economy Perspective: An NMR Study

    No full text
    The recovery of bioactive compounds from crop byproducts leads to a new perspective way of waste reutilization as a part of the circular economy. The present study aimed at an exhaustive metabolite profile characterization of globe artichoke and cauliflower byproducts (leaves, stalks, and florets for cauliflower only) as a prerequisite for their valorization and future implementations. The metabolite profile of aqueous and organic extracts of byproducts was analyzed using the NMR-based metabolomics approach. Free amino acids, organic acids, sugars, polyols, polyphenols, amines, glucosinolates, fatty acids, phospho- and galactolipids, sterols, and sesquiterpene lactones were identified and quantified. In particular, globe artichoke byproducts are a source of health-beneficial compounds including chiro-inositol (up to 10.1 mg/g), scyllo-inositol (up to 1.8 mg/g), sesquiterpene lactones (cynaropicrin, grosheimin, dehydrocynaropicrin, up to 45.5 mg/g in total), inulins, and chlorogenic acid (up to 7.5 mg/g), whereas cauliflower byproducts enclose bioactive sulfur-containing compounds S-methyl-L-cysteine S-oxide (methiin, up to 20.7 mg/g) and glucosinolates. A variable content of all metabolites was observed depending on the crop type (globe artichoke vs. cauliflower) and the plant part (leaves vs. stalks). The results here reported can be potentially used in different ways, including the formulation of new plant biostimulants and food supplements

    The Chloroplast Genome of Endive (<i>Cichorium endivia</i> L.): Cultivar Structural Variants and Transcriptome Responses to Stress Due to Rain Extreme Events

    No full text
    The chloroplast (cp) genome diversity has been used in phylogeny studies, breeding, and variety protection, and its expression has been shown to play a role in stress response. Smooth- and curly-leafed endives (Cichorium endivia var. latifolium and var. crispum) are of nutritional and economic importance and are the target of ever-changing breeding programmes. A reference cp genome sequence was assembled and annotated (cultivar ‘Confiance’), which was 152,809 base pairs long, organized into the angiosperm-typical quadripartite structure, harboring two inverted repeats separated by the large- and short- single copy regions. The annotation included 136 genes, 90 protein-coding genes, 38 transfer, and 8 ribosomal RNAs and the sequence generated a distinct phyletic group within Asteraceae with the well-separated C. endivia and intybus species. SSR variants within the reference genome were mostly of tri-nucleotide type, and the cytosine to uracil (C/U) RNA editing recurred. The cp genome was nearly fully transcribed, hence sequence polymorphism was investigated by RNA-Seq of seven cultivars, and the SNP number was higher in smooth- than curly-leafed ones. All cultivars maintained C/U changes in identical positions, suggesting that RNA editing patterns were conserved; most cultivars shared SNPs of moderate impact on protein changes in the ndhD, ndhA, and psbF genes, suggesting that their variability may have a potential role in adaptive response. The cp transcriptome expression was investigated in leaves of plants affected by pre-harvest rainfall and rainfall excess plus waterlogging events characterized by production loss, compared to those of a cycle not affected by extreme rainfall. Overall, the analyses evidenced stress- and cultivar-specific responses, and further revealed that genes of the Cytochrome b6/f, and PSI-PSII systems were commonly affected and likely to be among major targets of extreme rain-related stress

    Byproducts of Globe Artichoke and Cauliflower Production as a New Source of Bioactive Compounds in the Green Economy Perspective: An NMR Study

    No full text
    The recovery of bioactive compounds from crop byproducts leads to a new perspective way of waste reutilization as a part of the circular economy. The present study aimed at an exhaustive metabolite profile characterization of globe artichoke and cauliflower byproducts (leaves, stalks, and florets for cauliflower only) as a prerequisite for their valorization and future implementations. The metabolite profile of aqueous and organic extracts of byproducts was analyzed using the NMR-based metabolomics approach. Free amino acids, organic acids, sugars, polyols, polyphenols, amines, glucosinolates, fatty acids, phospho- and galactolipids, sterols, and sesquiterpene lactones were identified and quantified. In particular, globe artichoke byproducts are a source of health-beneficial compounds including chiro-inositol (up to 10.1 mg/g), scyllo-inositol (up to 1.8 mg/g), sesquiterpene lactones (cynaropicrin, grosheimin, dehydrocynaropicrin, up to 45.5 mg/g in total), inulins, and chlorogenic acid (up to 7.5 mg/g), whereas cauliflower byproducts enclose bioactive sulfur-containing compounds S-methyl-L-cysteine S-oxide (methiin, up to 20.7 mg/g) and glucosinolates. A variable content of all metabolites was observed depending on the crop type (globe artichoke vs. cauliflower) and the plant part (leaves vs. stalks). The results here reported can be potentially used in different ways, including the formulation of new plant biostimulants and food supplements

    Untargeted NMR-based methodology in the study of fruit metabolites

    No full text
    In this review, fundamental aspects of the untargeted NMR-based methodology applied to fruit characterization are described. The strategy to perform the structure elucidation of fruit metabolites is discussed with some examples of spectral assignments by 2D experiments. Primary ubiquitous metabolites as well as secondary species-specific metabolites, identified in different fruits using an untargeted 1H-NMR approach, are summarized in a comprehensive way. Crucial aspects regarding the quantitative elaboration of spectral data are also discussed. The usefulness of the NMR-based metabolic profiling was highlighted using some results regarding quality, adulteration, varieties and geographical origin of fruits and fruit-derived products such as juices

    Untargeted NMR-based methodology in the study of fruit metabolites

    No full text
    In this review, fundamental aspects of the untargeted NMR-based methodology applied to fruit characterization are described. The strategy to perform the structure elucidation of fruit metabolites is discussed with some examples of spectral assignments by 2D experiments. Primary ubiquitous metabolites as well as secondary species-specific metabolites, identified in different fruits using an untargeted 1H-NMR approach, are summarized in a comprehensive way. Crucial aspects regarding the quantitative elaboration of spectral data are also discussed. The usefulness of the NMR-based metabolic profiling was highlighted using some results regarding quality, adulteration, varieties and geographical origin of fruits and fruit-derived products such as juices
    corecore