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Introduction

Down syndrome (DS) is a condition caused by a trisomy 
of the 21st chromosome affecting approximately 1 out 
of 700 live births (1). DS is associated with, among other 
conditions, intellectual disability, craniofacial alterations, 

congenital heart disease, early-onset Alzheimer’s disease, 
and gastrointestinal disorders. Muscle hypotonia and low 
muscle strength are found in persons with trisomy 21 as 
well, with an intellectual disability only partially explaining 
such a deficit (2). The Ts65Dn mouse is a murine model 
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of DS presenting several phenotypes expressed in the 
human condition (3) inclusive of gross motor and muscle 
phenotypes. However, relatively little work has been done 
in this animal model investigating the trisomy-related 
muscular deficit or testing the efficacy of treatments with an 
aim at getting cues for treating the human DS. 

Previous work from our laboratory (4,5) examined the 
ultrastructure and metabolomics of the quadriceps muscle in 
sedentary euploid (SE) and trisomic Ts65Dn mice showing 
trisomy-associated morphological changes in mitochondria 
and myonuclei consistent with the multi-systemic premature 
aging typical of DS as well as sarcoplasmic hypertrophy of 
myofibers. In accordance, magnetic resonance spectroscopy 
(MRS) metabolomics showed, in trisomic mice, a tendency 
to an overall increase in muscle metabolites involved in 
protein synthesis. Following up on such findings, in the 
present work we explored in Ts65Dn mice the effect 
of physical exercise on the proximal hindlimb (i.e., the 
body segment containing the largest single mass of body 
skeletal muscle) using quantitative magnetic resonance 
imaging (MRI) (6,7). Quadriceps muscle was selected for 
MRS metabolomics and fiber typing evaluation because it 
represents a major part of the muscle mass of the proximal 
hindlimb, having the significantly greatest cross-sectional 
area in comparison with any other functional muscle group 
in the hindlimb (8); moreover, the quadriceps muscle is the 
primary mover of the hindlimb, being a primary muscle 
involved in gait. 

Physical exercise is beneficial to optimize general and 
maximal muscular strength development in children and 
young adults with DS (9). However, direct investigation of 
the DS muscle status after physical training is lacking. The 
experiment was carried out across a large span of mouse 
adulthood i.e., from the consolidation of the muscular 
deficit (around 6 months of age) (10) to early middle-age 
(around 12 months), when signs of early neuromuscular 
senescence are not yet ensued (11).

We present the following article in accordance with the 
ARRIVE reporting checklist (available at https://dx.doi.
org/10.21037/qims-21-729). 

Methods

Animals and adapted physical training protocol

Ts65Dn [strain: B6EiC3Sn.BLia-Ts(17<16>)65Dn/DnJ] 
breeder mice were obtained from the Jackson Laboratory, 
Bar Harbor, ME, USA. Tissue for genotyping was obtained 

from tail clips (12) in p11 male mice. The mice were 
housed in groups of 3–4 by genotype and maintained 
under standard conditions (24±1 ℃ ambient temperature, 
60%±15% relative humidity, and 12 h light/dark cycle) and 
fed ad libitum with standard commercial chow. The trisomic 
mice presented deficits in balance and motor coordination 
by month 4 of age (10). 

The study was approved by national committee board 
of the Italian Ministry of Health (ref.: 538/2015-PR), in 
compliance with the Italian Ministry of Health (DL March 4,  
2014, n. 26) and the European Communities Council 
(Directive 63/2010/EU of the European Parliament and of 
the Council) guidelines for the care and use of animals. A 
priori criterion of exclusion was refractoriness to running. 
A total of 40 animals was used for this study. A schematic 
overview of the whole experiment is presented in Figure 1.

For physical training, trisomic and euploid (control) mice 
were assigned to one of four groups: sedentary trisomic (ST; 
n=10), SE (n=10), training trisomic (TT; n=10), and training 
euploid (TE; n=10). Allocation of mice to the group was 
made with the “=Rand()” function in Microsoft Excel. Mice 
in the TT and TE group underwent training on a Harvard 
Instruments treadmill for 45 min a day at 8 m/min belt 
speed, (0% incline) 5 days a week for 1 month (13). In this 
work, physical training was adapted to optimize trisomic 
mice compliance to training (13). Data were acquired at 
baseline and three days after completion of the experimental 
protocol (endpoint). Outcome assessment and data analysis 
were carried out in blind to mouse genetics and group.

MRI and in vivo morphometry

Images were acquired using a Bruker tomograph (Bruker, 
Karlsruhe, Germany) equipped with a 4.7 Tesla, 33‐cm  
bore horizontal magnet (Oxford Ltd., Oxford, UK). 
Anesthetized (isofluorane) mice were placed over a heated 
bed into a birdcage radiofrequency coil. Relaxation time 
T2 was measured in the proximal hindlimb muscles with a 
multiecho spin-echo sequence with 16 echoes, repetition time  
=2,858 ms, echo time ranging from 11.7 to 187 ms, field of 
view =3.5×3.5 cm2, bandwidth =60 kHz, matrix size =128×128, 
isotropic in‐plane resolution =0.273 mm, slice thickness  
=1.0 mm, 14 slices, number of averages =1 and fat 
suppression set to off. T2 relaxation times were calculated 
by fitting a mono-exponential function to the average signal 
found in a manually drawn ROI on the thigh muscle. T2w 
images were acquired using a rapid acquisition with relaxation 
enhancement (RARE) sequence at a repetition time 
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Figure 1 Schematic overview of the whole experiment. Nine mice dropped out the MRI experiment due to death (ST, n=3; SE, n=1), 
refractoriness to running (TT, n=1), problems during MRI acquisition (TT, n=2; SE, n=1; TE, n=1). One TT mouse dropped out the MRS 
metabolomics analysis due to technical problems. MRI, magnetic resonance imaging; ST, sedentary trisomic; SE, sedentary euploid; TT, 
training trisomic; TE, training euploid; MRS, magnetic resonance spectroscopy. 
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=5,000 ms, echo time =56 ms, field of view =3.5×3.5 cm2,  
bandwidth =50 kHz, matrix size =192×192, isotropic in‐
plane resolution =0.182 mm, slice thickness =1.0 mm,  
14 slices, RARE factor =8; number of averages =1 and fat 
suppression set to off. 

Four 1-mm thick axial sections of the proximal hindlimbs, 
acquired in each mouse at baseline and at the endpoint  
(Figure 2), were selected using anatomical landmarks 
(proximal, hip joint; distal, condyles). The cross-sectional 
areas of the proximal hindlimb skeletal muscle {i.e., proximal 
hindlimb muscles plus femur bone minus proximal hindlimb 
adipose tissue under the complex superficial/deep (lata) fascia 
(for the sake of simplicity referred to as fascia in the following) 
[(subfascia) adipose tissue] and femur bone}, proximal 
hindlimb subfascia adipose tissue, and subcutaneous adipose 
tissue (i.e., total sectional area minus proximal hindlimb 
muscle + bone area + area occupied by other structures), 
were measured using the ImageJ software (National 
Institutes of Health, USA) by manually drawing ROIs on 
T2w RARE images. Tissue volumes, expressed as mm3,  
were obtained according to the Cavalieri’s principle. The 
skeletal muscle volume of the hindlimbs was considered the 
main outcome of the study.

MRS metabolomics 

At the endpoint, Ts65Dn mice were deeply anesthetized 
with tribromoethanol and killed by cervical dislocation. 
Quadriceps muscles of TE (n=5) and TT (n=5) mice for a 
total of 10 animals, were immediately dissected out after 
sacrifice, blotted on filter paper, weighed, and frozen in 
liquid nitrogen. Frozen specimens were then freeze-dried, 
ground to powder, and extracted in a mixture of methanol 
and chloroform as previously described (5). The resulting 
aqueous and organic fractions were dried and stored at  
−80 ℃ until analysis.

The spectra of aqueous and organic fractions were 
recorded at 27  ℃ on a Bruker AVANCE 600 NMR 
spectrometer operating at the proton frequency of  
600.13 MHz. 1H spectra were referenced to the methyl 
group signal of 3-(trimethylsilyl)-propionic-2,2,3,3-d4 acid 
sodium salts (TSP; δ =0.00 ppm) in D2O, and to the CH3 
signal of TMS in CDCl3/CD3OD, respectively. Assignment 
of spectra was conducted as previously described (14). In the 
case of aqueous samples, the integral values were normalized 
to the integral of the standard TSP (methyl group signal) 
set to 100 and divided by sample wet weight and used for 
quantitative analysis. In the case of CDCl3/CD3OD spectra, 
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a previously described procedure was followed (14). 

Fiber typing 

At the endpoint, anesthetized mice were perfused 
transcardially with 0.1 M phosphate buffer solution 
(PBS) followed by 4% paraformaldehyde in PBS. After 
perfusion, the quadriceps muscle was quickly removed and 
cut transversely at mid-length. Samples of about 1 mm3 
were further placed in 4% paraformaldehyde and 0.2% 
glutaraldehyde in 0.1 M PBS for 2 h at 4 ℃. After fixation, 
samples were washed in PBS, treated with 0.5 M NH4Cl 
solution in PBS for 45 min at 4 ℃ to block free aldehyde 
groups, dehydrated in graded concentrations of ethanol 
at room temperature, and embedded in LR-White resin. 
Two μm-thick cross-sections of LR-White embedded 
muscles from TE (n=4) and TT (n=4) mice, for a total 
of 8 animals, were submitted to immunohistochemical 
procedures to distinguish fast and slow fibers (5) using 
a mouse monoclonal antibody recognizing the heavy 
chain of skeletal fast fiber myosin (clone MY-32, Sigma-
Aldrich, Buchs, Switzerland) diluted 1:200 in PBS; the 
antigen-antibody complex was revealed with an Alexa 488 
conjugated antibody against mouse IgG (Molecular Probes, 
Invitrogen, Milan, Italy). Micrographs were taken with 
an Olympus BX51 microscope equipped with a 100 W 
mercury lamp and recorded in an Olympus Camedia C-5050 
digital camera. In immunolabeled samples, the percentage 
of fast and slow muscle fibers was calculated on a minimum 
of 100 myofibers per hindlimb, with at least 650 myofibers 
measured per group (trisomic and euploid). 

Statistical analysis 

A priori analysis for the sample size for the MRI experiment 
was carried out with G*Power Software (v.3.1) using the 
following settings: effect size f =0.25, alpha =0.05, power 
=0.80, four groups, and two measurement times. Results 
showed that a total of 24 mice was needed. 

Data are presented as mean ± standard error of the mean 
(SEM). For MRI measurements, the normality of data was 
assessed with the Shapiro-Wilk test. One-way ANOVA 
was used for group-group comparison at baseline; two-
way ANOVA (factor: training; measurement time point) 
was used for assessing the effect of physical exercise and 
time of measurement (i.e., baseline and endpoint) as well 
as their interaction in the four groups of mice. Effect 
size (eta squared) was calculated and rated according  

Figure 2 Representative Ts65Dn hindlimbs MRI images taken at 
20% (A), 40% (B), 60% (C), and 80% (D) distance from the hip 
joint to illustrate the morphometric variables measured in this 
study. (A) Total sectional area, used for calculation of subcutaneous 
adipose tissue area. (B) Subcutaneous adipose tissue area is total 
sectional area minus the proximal hindlimb muscles + bone area 
and other structures (red area). (C) Proximal hindlimb muscles + 
bone area (blue area). (D) Femur bone area (green area), proximal 
hindlimb intermuscular adipose tissue area (yellow area). MRI, 
magnetic resonance imaging. 

A

B

C
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to Cohen, 1988 (15): 0.01 small, 0.06 medium, 0.14 large. 
The two-tailed Spearman correlation coefficient (rho) was 
used to assess the association between variables. Partial 
correlations were also calculated using body mass as the 
covariate. When comparing results of MRS metabolomics 
and fiber type analysis, the non-parametric Mann-Whitney 
test was used due to the limited number of mice. Statistical 
significance was set at alpha ≤0.05. The IBM-SPSS (v.25) 
statistical package was used for all analyses. 

Results

The mean age of mice used in this experiment was 9±0.64 
(range, 6–12) months. 

Body weight was higher in euploid (n=17) vs. trisomic 
(n=14) mice at baseline (46.4±1.2 and 40.6±0.97 g, 
respectively; F =13.289, P=0.001, eta squared: medium) 
also after adjusting for age (P<0.001) and remained so at 
endpoint (P<0.001). A priori power analysis demonstrated 
that a minimum of 24 mice was needed to power the study. 
To account for the possible drop-out of mice a total of  
40 mice (ten per each group: TT, TE, ST, SE) started the 
experiment. Nine mice dropped out the MRI experiment 
due to death (trisomic, n=3; euploid, n=1), refractoriness to 
running (trisomic, n=1; euploid, n=0), problems during MRI 
acquisition (trisomic, n=2; euploid, n=2). Valid, complete 
MRI results were obtained for 31 mice (17 euploids,  
14 trisomics) and used in the analysis (Figure 1). All mice 
in the sample were able to correctly carry out the physical 
training protocol. Group distribution of mice was as 
follows: SE, n=8; ST, n=7; TE, n=9; TT, n=7. Therefore, 
according to the a priori analysis, the study was sufficiently 
powered, with a similar number of mice in each group.

MRI and in vivo morphometry

The volume of proximal hindlimb skeletal muscle, proximal 
hindlimb subfascia adipose tissue, subcutaneous adipose 
tissue, and T2 was not significantly different in the four 
groups of mice (SE, n=8; TE, n=9; ST, n=7; TT, n=7) at 
baseline (F =0.058, P=0.812; F =2.040, P=0.164; F =1.874, 
P=0.182; F =0.647, P=0.428; F =0.142, P=0.709 respectively; 
eta squared small for all, Table 1). After adjusting for age, all 
differences remained non-significant (F ranging 0.000–2.678,  
P ranging 0.113–0.990). Two-way ANOVA showed no 
significant difference in the four groups of mice for both 
training and measurement time-point as well as their 
interaction (eta squared small to medium). Similar findings 

were found after adjusting for body mass or age. Correlation 
analysis carried out in the whole sample of mice at baseline 
showed a statistically significant association between body 
mass and subcutaneous adipose tissue volume (Figure 3A, 
r=0.454, P=0.010) as well as, at the limits of significance, 
proximal hindlimb subfascia adipose tissue volume (Figure 3B,  
r=0.331, P=0.069). No statistically significant correlation was 
found between body mass and proximal hindlimb skeletal 
muscle volume (Figure 3C, r=0.005, P=0.979). Subcutaneous 
and proximal hindlimb subfascia adipose tissue volumes 
positively correlated, but the correlation was not statistically 
significant (Figure 3D, r=0.230, P=0.214).

MRS metabolomics 

Several intermediate metabolism compounds (succinic 
acid, lactic acid, acetic acid, pyruvic acid), amino acids (e.g., 
leucine, isoleucine, valine, alanine, tyrosine), nucleosides 
(NAD+), as well as key molecules for muscle energetics 
(α-glucose, creatine/phosphocreatine), were unambiguously 
identified and quantified in the aqueous fraction as shown 
previously (5). In TE (n=5) vs. TT (n=4; one sample was 
discarded due to technical problems; Figure 1) mice, the 
aqueous metabolites valine (0.51±0.080 vs. 0.72±0.127), 
isoleucine (0.20±0.048 vs. 0.31±0.071), leucine (1.68±0.128 
vs. 2.32±0.540) and α-glucose (1.27±0.216 vs. 1.59±0.111) 
were present in lower amounts per unit wet tissue (P=0.027; 
P=0.014; P=0.050; P=0.027, respectively).

At endpoint, the creatine to phosphocreatine ratio  
(Cr/PCr) was lower in the skeletal muscle of euploid vs. 
trisomic mice at the limit of statistical significance (81.39 vs. 
83.87, P=0.073).

Fiber typing 

The percentage of slow twitch fibers was not significantly 
different in TE (n=4) vs. TT (n=4) mice: (4.75±4.26 vs. 
2.25±1.54, Z =−0.367, P=0.712).

Discussion

Mitigation of the skeletal muscle deficit of DS would have a 
strong impact on the quality of life of affected people (16). 
Physical exercise has been shown to be beneficial on several 
outcomes in human DS (17,18). In Ts65Dn mice, physical 
exercise has been shown to improve several neurologic 
characteristics (19-22). In this work, we explored for the first 
time the in vivo effect of physical exercise, a well-known tool 
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for improving skeletal muscle condition, in a current animal 
model of DS. While we cannot exclude that the adapted 
physical training protocol we adopted was insufficient to 
fully highlight the expected effect of long-term exercise 
on skeletal muscle, previous work from our laboratory 
showed that such adapted physical exercise was able to 
positively affect both brain (13) and skeletal muscle (23)  
outcomes in old (i.e., frail) mice. 

At baseline, trisomic mice showed lower body mass 
than the euploid, consistently with previous findings (24); 
however, proximal hindlimbs skeletal muscle volume did 
not show statistically significant differences, suggesting that 
difference in body mass is due to lower volume of organs 
other than muscles, the main component of hindlimbs. 
This is supported by the absence of correlation between 
body mass and proximal hindlimb skeletal muscle volume 
(Figure 3C) in the whole group of mice (trisomic + euploid) 
as well as the positive correlation between body mass and 
the volume of proximal hindlimb subcutaneous adipose 
tissue (Figure 3A). Moreover, subfascia and subcutaneous 
adipose tissue volumes were positively, albeit not statistically 

significantly, correlated. These data suggest that changes 
in both skeletal muscle and adipose tissue are not likely to 
explain the difference in body mass between euploid and 
trisomic mice. T2 relaxation time, which may be altered 
in animal models of dystrophy (25) were similar as well. 
Indeed, the T2 values of skeletal muscle here measured are 
higher compared to literature (26); however, the sequence 
adopted in this study had fat suppression set to off to be 
sensitive to fat. Accordingly, the muscular fat could have 
boosted the global voxel signal (being the T2 of fat generally 
higher than that of muscle) and hence generate increased 
T2 values of skeletal muscle in both euploid and trisomic 
mice. Taken together, literature findings and data presented 
herein strongly suggest that structural and functional 
changes in the skeletal muscle are not a major cause for the 
locomotor deficit observed in DS. Interestingly, adapted 
physical exercise did not affect skeletal muscle and adipose 
tissue volumes in hindlimbs nor T2 values, independently of 
age. Moreover, the proportion of slow-twitch fibers was not 
affected by adapted physical exercise. Further, metabolomic 
data suggested that adapted physical exercise stimulates the 

Table 1 MRI-measured variables in the proximal hindlimbs of Ts65Dn mice at baseline and the end of the 4-week experimental period (endpoint)

Variable Experimental group Baseline End point

Proximal hindlimb skeletal muscle (mm3) SE 3,997.3±104.3 3,753.0±114.9

TE 3,880.2±138.7 3,851.1±172.9

ST 4,044.0±154.6 4,064.3±151.5

TT 3,898.6±61.6 3,738.9±104.8

Proximal hindlimb subfascial adipose tissue (mm3) SE 268.3±27.4 264.0±22.9

TE 325.9±40.1 269.0±39.4

ST 263.2±24.2 219.7±21.2

TT 227.9±31.3 269.2±31.9

Subcutaneous adipose tissue (mm3) SE 2,046.4±226.8 2,083.9±252.6

TE 1,706.2±113.8 1,820.0±227.9

ST 1,693.6±112.6 1,808.3±104.6

TT 1,790.6±221.0 1,910.3±256.3

T2 (ms) SE 44.9±1.49 44.2±1.99

TE 44.0±2.59 43.6±2.11

ST 44.7±0.84 44.5±0.48

TT 43.8±1.68 43.6±0.67

Data are mean ± SEM. No statistically significant difference was found within groups at baseline and endpoint, nor between baseline 
and endpoint in each group. SE, n=8; TE, n=9; ST, n=7; TT, n=7. MRI, magnetic resonance imaging; SE, sedentary euploid; TE, training  
euploid; ST, sedentary trisomic; TT, training trisomic; SEM, standard error of the mean.
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Figure 3 Correlation analysis (Pearson’s r) in the whole sample of Ts65Dn mice (euploid, blue ×; trisomic, red +; n=31) at baseline. (A) 
Positive correlation (r=0.454, P=0.010) between body mass and subcutaneous adipose tissue volume. (B) Positive correlation at the limit of 
statistical significance between body mass and proximal hindlimb subfascia adipose tissue volume (r=0.331, P=0.069). (C) Lack of correlation 
between body mass and proximal hindlimb skeletal muscle volume (r=0.005, P=0.979). (D) Positive non statistically significant correlation 
between subcutaneous and proximal hindlimb subfascia adipose tissue volumes (r=0.230, P=0.214). 

metabolic pathways typically triggered by training better in 
euploid than trisomic mice. In fact, lower levels of valine, 
isoleucine, and leucine were found in euploid vs. trisomic 
mice at endpoint. This is possibly associated with the 
increasing energy expenditure induced by physical exercise, 
which is reflected in the catabolism of the branched-chain 
amino acids valine, isoleucine, leucine which, in turn, are 
to be oxidated to contribute to the energy metabolism (27). 
Instead, a tendency was found of the Cr/PCr to be lower in 
the skeletal muscle of euploid vs. trisomic mice at endpoint 
suggesting better ability to restore energy storage in the 
former. It should be kept in mind that measurements were 
carried out at endpoint i.e., three days after completion of the 
training period, in a basal state. Further studies using in vivo 
31PMRS would allow better understanding of the in vivo acute 
effect of physical exercise in the DS skeletal muscle.

A limit of this study is that we did not measure the 
muscular fat fraction in the proximal hindlimb muscles. 
Accordingly, we could not make any inference about the 
effect of adapted physical exercise on that variable, which 
has been associated with decreasing muscle function in 

peripheral muscular disease (28). Future work will help 
clarifying this issue.

Overall, the current findings suggest that (I) central 
factors and/or neural activation play an important 
role in the muscular deficit of DS. This is consistent 
with the cerebellar deficits observed in DS (inclusive 
of a reduced number of cells) (29), the impairment in 
neuronal connectivity and cortex structure (30), as well 
as the lower motor conduction velocity of the peripheral 
nerve (31) and the neuroanatomical defects affecting 
the neuromuscular junction (32); (II) exercise-associated 
energy metabolism is to some extent hampered in 
trisomic muscle. Further research is needed to verify 
if energy metabolism is a cue to an intrinsic metabolic 
deficit in the DS skeletal muscle. 
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