23 research outputs found

    In vitro Anti-Cancer Effect of Polymeric Nanoparticles Encapsulating Caralluma tuberculata in Cancer Cells

    Get PDF
    Rapidly evolving drug delivery systems employ therapeutic agents (liposomes, polymers, and nanospheres) to achieve optimum therapeutic and targeted effects with declined side effects to cure chronic diseases like cancer. Nano-formulation of a natural product i.e., Caralluma tuberculata (Ct) extract, has been used as an effective combinational therapy with enhanced biocompatibility owing to its strong anti-oxidant, anti-inflammatory, anti-bacterial, and anti-tumor potential. Ct extract was prepared using three solvents (EtOH, MeOH, and CHCl3) amongst which methanolic Ct extract exhibited the highest percentage yield (9.6%). Qualitative phytochemical screening, thin layer chromatography (TLC), and antioxidant assays (DPPH assay and H2O2 assay) were performed. The percentage free radical scavenging values were found to be 86.25% (IC50=140.1μg/ml) and 88% (IC50=14.22μg/ml) at 1000 μg/ml concentration for both assays respectively. Methanolic Ct extract was then encapsulated in chitosan-tripolyphosphate (CS-TPP) nanoparticles using ionic gelation method with an encapsulation efficiency of 87%. Characterization showed uniform size distribution of 140nm particle size using DLS and encapsulation of Ct extract inside CS-TPP nanoparticles was confirmed by UV spectrophotometry and FTIR. Ct loaded CS-TPP nanoparticles showed less than or equal to 5% hemolytic activity at concentrations of 15.62μg/ml, 31.25μg/ml, 62.5μg/ml, and 125μg/ml, suggesting its safer usage at lower concentration. Rhodamine conjugated Ct loaded CS-TPP nanoparticles showed significant uptake efficiency in breast cancer cells compared to control. Ct extract and the nanoformulation were treated against triple negative breast cancer cell lines (Cal-51) for the evaluation of cytotoxicity exhibiting 30-40% (IC50=122.3μg/ml) and up to 75% (IC50=14.39μg/ml) cytotoxicity respectively. The study paves way for the encapsulation of medicinal plants in polymeric nanoparticles to achieve safer and highly efficient drug delivery systems

    Thermal enhancement and numerical solution of blood nanofluid flow through stenotic artery

    Get PDF
    The blood flow through stenotic artery is one of the important research area in computational fluid mechanics due to its application in biomedicine. Aim of this research work is to investigate the impact of nanoparticles on the characteristics of human blood flow in a stenosed blood artery. In under consideration problem Newtonian fluid is assumed as human blood. Newtonian fluid flows through large blood vessels (more than 300 mu m). The constitutive equations together with the boundary conditions are diminished to non-dimensional form by using boundary layer approximation and similarity transfiguration to attain the solution of velocity and temperature distribution of blood flow through arterial stenosis numerically with the help of Matlab bvp4c. The results for physical quantities at cylindrical surface are calculated and their effects are also presented through tables. The heat transfer rate increases throughout the stenosed artery with the concentration of copper nanoparticle. Velocity curve decreases by increasing the values of flow parameter and nanoparticle volume fraction. Temperature curve increases due to increase in the values of nanoparticle volume fraction and decrease in Prandtl number.The work of U.F.-G. was supported by the government of the Basque Country for the ELKA-RTEK21/10 KK-2021/00014 and ELKARTEK22/85 research programs, respectively. Additionally, this work was supported by the Researchers Supporting Project Number (RSP-2021/33), King Saud University, Riyadh, Saudi Arabia

    Tumor necrosis factor -α, interleukin-10, intercellular and vascular adhesion molecules are possible biomarkers of disease severity in complicated Plasmodium vivax isolates from Pakistan.

    Get PDF
    Background: Cytokine-mediated endothelial activation pathway is a known mechanism of pathogenesis employed by Plasmodium falciparum to induce severe disease symptoms in human host. Though considered benign, complicated cases of Plasmodium vivax are being reported worldwide and from Pakistan. It has been hypothesized that P.vivax utilizes similar mechanism of pathogenesis, as that of P.falciparum for manifestations of severe malaria. Therefore, the main objective of this study was to characterize the role of cytokines and endothelial activation markers in complicated Plasmodium vivax isolates from Pakistan. Methods and Principle Findings: A case control study using plasma samples from well-characterized groups suffering from P.vivax infection including uncomplicated cases (n=100), complicated cases (n=82) and healthy controls (n=100) were investigated. Base line levels of Tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), Interleukin-10 (IL-10), Intercellular adhesion molecule-1 (ICAM-1), Vascular adhesion molecule-1(VCAM-1) and Eselectin were measured by ELISA. Correlation of cytokines and endothelial activation markers was done using Spearman’s correlation analysis. Furthermore, significance of these biomarkers as indicators of disease severity was also analyzed. The results showed that TNF-α, IL-10, ICAM-1and VCAM-1 were 3-fold, 3.7 fold and 2 fold increased between uncomplicated and complicated cases. Comparison of healthy controls with uncomplicated cases showed no significant difference in TNF-α concentrations while IL-6, IL-10, ICAM-1, VCAM-1 and E-selectin were found to be elevated respectively. In addition, significant positive correlation was observed between TNF-α and IL-10/ ICAM-1, IL-6 and IL-10, ICAM-1 and VCAM-1.A Receiver operating curve (ROC) was generated which showed that TNF-α, IL-10, ICAM-1 and VCAM-1 were the best individual predictors of complicated P.vivax malaria. Conclusion: The results suggest that though endothelial adhesion molecules are inducible by pro-inflammatory cytokine TNF-α, however, cytokine-mediated endothelial activation pathway is not clearly demonstrated as a mechanism of pathogenesis in complicated P.vivax malaria cases from Pakistan

    Sustainable Irrigation Management for Higher Yield

    Get PDF
    Sustainable irrigation is sensible application of watering to plants in agriculture, landscapes that aids in meeting current survival and welfare needs. Sustainable irrigation management can help with climate change adaptation, labor, energy savings, and the production of higher-value and yield of crops to achieve zero hunger in water-scarce world. To ensure equal access to water and environmental sustainability, investments in expanded and enhanced irrigation must be matched by improvements in water governance. Sustainable irrigation must be able to cope with water scarcity, and be resilient to other resource scarcities throughout time in context of energy and finance. The themes and SDGs related to clean water, water resources sustainability, sustainable water usage, agricultural and rural development are all intertwined in the concept of “sustainable irrigation for higher yield.” Sustainable irrigation management refers to the capability of using water in optimum quantity and quality on a local, regional, national, and global scale to meet the needs of humans and agro-ecosystems at present and in the future to sustain life, protect humans and biodiversity from natural and human-caused disasters which threaten life to exist. Resultantly higher yields will ensure food security

    Molecular epidemiology of hcv among health care workers of khyber pakhtunkhwa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies of the molecular epidemiology and risk factors for hepatitis C virus (HCV) in health care workers (HCWs) of Peshawar, Khyber Pakhtunkhwa region are scarce. Lack of awareness about the transmission of HCV and regular blood screening is contributing a great deal towards the spread of hepatitis C. This study is an attempt to investigate the prevalence of HCV and its possible association with both occupational and non-occupational risk factors among the HCWs of Peshawar.</p> <p>Results</p> <p>Blood samples of 824 HCWs, aged between 20-59 years were analysed for anti-HCV antibodies, HCV RNA and HCV genotypes by Immunochromatographic tests and PCR. All relevant information was obtained from the HCWs with the help of a questionnaire. The study revealed that 4.13% of the HCWs were positive for HCV antibodies, while HCV RNA was detected in 2.79% of the individuals. The most predominant HCV genotype was 3a and 2a.</p> <p>Conclusion</p> <p>A program for education about occupational risk factors and regular blood screening must be implemented in all healthcare setups of Khyber Pakhtunkhwa province in order to help reduce the burden of HCV infection.</p

    Probe of Radiant Flow on Temperature-Dependent Viscosity Models of Differential Type MHD Fluid

    No full text
    This paper numerically investigates the combined effects of the radiation and MHD on the flow of a viscoelastic Walters’ B liquid fluid model past a porous plate with temperature-dependent variable viscosity. To study the effects of variable viscosity on the fluid model, the equations of continuity, momentum with magnetohydrodynamic term, and energy with radiation term have been expanded. To understand the phenomenon, Reynold’s model and Vogel’s model of variable viscosity are also incorporated. The dimensionless governing equations are two-dimensional coupled and highly nonlinear partial differential equations. The highly nonlinear PDEs are transferred into ODEs with the assistance of suitable transformations which are solved with the help of numerical techniques, namely, shooting technique coupled with Runge–Kutta method and BVP4c solution method for the numerical solutions of governing nonlinear problems. Viscosity is considered as a function of temperature. Skin friction coefficient and Nusselt number are investigated through tables and graphs in the present probe. The behavior of emerging parameters on the velocity and temperature profiles is studied with the help of graphs. For Reynold’s model, we have shrinking stream lines and increasing three-dimensional graphs. γ and Pr are reduced for both models

    Modeling and analysis of hybrid-blood nanofluid flow in stenotic artery

    No full text
    Abstract Current communication deals with the flow impact of blood inside cosine shape stenotic artery. The under consideration blood flow is treated as Newtonian fluid and flow is assumed to be two dimensional. The governing equation are modelled and solved by adopting similarity transformation under the stenosis assumptions. The important quantities like Prandtl number, flow parameter, blood flow rate and skin friction are attained to analyze the blood flow phenomena in stenosis. The variations of different parameters have been shown graphically. It is of interest to note that velocity increases due to change in flow parameter gamma and temperature of blood decreases by increasing nanoparticles volume fraction and Prandtl number. In the area of medicine, the most interesting nanotechnology approach is the nanoparticles applications in chemotherapy. This study provides further motivation to include more convincing consequences in the present model to represent the blood rheology

    Effect of time dependent viscosity and radiation efficacy on a non-Newtonian fluid flow

    No full text
    In the present article we have studied the radiation effects on the flow of a viscoelastic fluid flow past a spongy plate by considering the viscosity as variable. In order to explore the variable viscosity effects, law of conservation of mass, momentum and energy are flourished. The shooting method is adapted to accomplish the numerical solution of governing equations. The effects of the involved emerging parameters such as Reynolds' model viscosity numbers, Vogel's model viscosity numbers and Prandtl numbers on velocity and temperature profiles are discussed with the help of graphs. The associated physical properties of the flow i.e. the skin friction coefficient and Nusselt numbers are presented graphically for different parameters. The tables for effects of distinct parameters on temperature profile at the wall for Reynolds' model and Vogel's model are given. Impact of various parameters involved on Nusselt number and skin friction are also presented in tables

    Wavelet-Transform-Based Sparse Code Multiple Access for Power Line Communication

    No full text
    This paper presents Discrete Wavelet Transformed Sparse Code Multiple Access (DWT-SCMA) in Power Line Communication (PLC) systems. In the present internet of things era, PLC provides an established infrastructure for low-cost and reliable indoor connectivity. PLC systems can benefit from the Sparse Code Multiple Access (SCMA) technique, which allows multiple users to access a frequency slot simultaneously to maximize spectrum efficiency. However, interuser interference arises in SCMA when numerous users map their data to the same frequency resource; this, in turn, is likely to be enhanced by the noisy PLC channel. This article adopts the intriguing aspects of DWT to address the interference difficulties. A mathematical model of the proposed technique is also presented and compared with Fast Fourier Transformed SCMA (FFT-SCMA). In the PLC environment, DWT-SCMA is found to outperform FFT-SCMA

    Heat Transfer Analysis and Effects of (Silver and Gold) Nanoparticles on Blood Flow Inside Arterial Stenosis

    No full text
    The current investigation was based on a simulation employing CFD in COMSOL Multiphysics. The base fluid that was used in this simulation was blood. The flow was considered as a laminar, unsteady and incompressible Newtonian fluid, and the Newtonian nature of blood is acceptable at high shear rate. The behavior of blood flow was analyzed with the objective of obtaining pressure, temperature and velocity effects through an arterial stenosis. Two types of nanoparticles were used in this work: silver (Ag) and gold (Au). The equations of mass, momentum and energy were solved by utilizing the CFD technique. A fine element size mesh was generated through COMSOL. The results of this analysis show that velocity changes through confined parts of the artery, the velocity in a diseased region is higher and the velocity decreases before and after the stenotic region. In the heat transfer feature, the upper and lower boundary temperature was set to 24.85 &deg;C and 27.35 &deg;C, respectively. The nanoparticles affected the physical properties of blood, such as thermal conductivity, density, dynamic viscosity and specific heat. The addition of gold and silver nanoparticles prevented overheating because both nanoparticles have a high thermal conductivity, which has a principal role in dissipating temperature quickly. Nusselt number variations were also calculated and the results show that the curve decreases inside the stenosis. It could be concluded that the streamlines show abnormal behavior and recirculation occurs just after the stenosed area at t = 0.7 s and 1 s. These results will help greatly in the treatment of stenosed arteries
    corecore