44 research outputs found

    IMPACT: The Journal of the Center for Interdisciplinary Teaching and Learning. Volume 10, Issue 2, Summer 2021

    Get PDF
    Impact: The Journal of the Center for Interdisciplinary Teaching & Learning is a peer-reviewed, biannual online journal that publishes scholarly and creative non-fiction essays about the theory, practice, and assessment of interdisciplinary education. Impact is produced by the Center for Interdisciplinary Teaching & Learning at Boston University College of General Studies. Impact accepts submissions throughout the year and publishes issues in February and July. Please submit your essays for consideration at https:// citl.submittable.com/submit. Impact provides free and open access to all of its research publications. There is no charge to authors for publication, and the journal abides by a CC-BY license. Authors published in Impact retain copyright on their articles, except for any third-party images and other materials added by Impact, which are subject to copyright of their respective owners. Authors are therefore free to disseminate and re-publish their articles, subject to any requirements of third-party copyright owners and subject to the original publication being fully cited. Visitors may download and forward articles subject to the citation requirements; all copyright notices must be displayed. If readers want to search by journal subject they might use these words: education, graduate, undergraduate, interdisciplinary, disciplines, curriculum, higher education.The theme of this issue is interdisciplinary approaches to, or including, the sciences. STEM disciplines like chemistry, biology, physics, computer science, and math are often taught as separate and distinct from the humanities. The concept of STEAM (STEM + Arts) has attempted to make STEM subjects more interdisciplinary, allowing students to interact with the material from different perspectives. The essays in this issue explore unique ways to design and implement interdisciplinary curricula that combine sciences and humanities/arts

    Multiplex Immunoassay of Lower Genital Tract Mucosal Fluid from Women Attending an Urban STD Clinic Shows Broadly Increased IL1ß and Lactoferrin

    Get PDF
    BACKGROUND: More than one million new cases of sexually transmitted diseases (STDs) occur each day. The immune responses and inflammation induced by STDs and other frequent non-STD microbial colonizations (i.e. Candida and bacterial vaginosis) can have serious pathologic consequences in women including adverse pregnancy outcomes, infertility and increased susceptibility to infection by other pathogens. Understanding the types of immune mediators that are elicited in the lower genital tract by these infections/colonizations can give important insights into the innate and adaptive immune pathways that are activated and lead to strategies for preventing pathologic effects. METHODOLOGY/PRINCIPAL FINDINGS: 32 immune mediators were measured by multiplexed immunoassays to assess the immune environment of the lower genital tract mucosa in 84 women attending an urban STD clinic. IL-3, IL-1ß, VEGF, angiogenin, IL-8, ß2Defensin and ß3Defensin were detected in all subjects, Interferon-α was detected in none, while the remaining mediators were detected in 40% to 93% of subjects. Angiogenin, VEGF, FGF, IL-9, IL-7, lymphotoxin-α and IL-3 had not been previously reported in genital mucosal fluid from women. Strong correlations were observed between levels of TNF-α, IL-1ß and IL-6, between chemokines IP-10 and MIG and between myeloperoxidase, IL-8 and G-CSF. Samples from women with any STD/colonization had significantly higher levels of IL-8, IL-3, IL-7, IL-1ß, lactoferrin and myeloperoxidase. IL-1ß and lactoferrin were significantly increased in gonorrhea, Chlamydia, cervicitis, bacterial vaginosis and trichomoniasis. CONCLUSIONS/SIGNIFICANCE: These studies show that mucosal fluid in general appears to be an environment that is rich in immune mediators. Importantly, IL-1ß and lactoferrin are biomarkers for STDs/colonizations providing insights into immune responses and pathogenesis at this mucosal site

    Coordination in Networks Formation: Experimental Evidence on Learning and Salience

    Full text link

    Spatial Heterogeneity and Imperfect Mixing in Chemical Reactions: Visualization of Density-Driven Pattern Formation

    No full text
    Imperfect mixing is a concern in industrial processes, everyday processes (mixing paint, bread machines), and in understanding salt water-fresh water mixing in ecosystems. The effects of imperfect mixing become evident in the unstirred ferroin-catalyzed Belousov-Zhabotinsky reaction, the prototype for chemical pattern formation. Over time, waves of oxidation (high ferriin concentration, blue) propagate into a background of low ferriin concentration (red); their structure reflects in part the history of mixing in the reaction vessel. However, it may be difficult to separate mixing effects from reaction effects. We describe a simpler model system for visualizing density-driven pattern formation in an essentially unmixed chemical system: the reaction of pale yellow Fe3+ with colorless SCN− to form the blood-red Fe(SCN)2+ complex ion in aqueous solution. Careful addition of one drop of Fe(NO3)3 to KSCN yields striped patterns after several minutes. The patterns appear reminiscent of Rayleigh-Taylor instabilities and convection rolls, arguing that pattern formation is caused by density-driven mixing

    Foundation Coursework in Undergraduate Inorganic Chemistry: Results from a National Survey of Inorganic Chemistry Faculty

    No full text
    A national survey of inorganic chemists explored the self-reported topics covered in foundation-level courses in inorganic chemistry at the postsecondary level; the American Chemical Society’s Committee on Professional Training defines a foundation course as one at the conclusion of which, “a student should have mastered the vocabulary, concepts, and skills required to pursue in-depth study in that area.” Anecdotal evidence suggested that more than one type of Inorganic Chemistry Foundation course was offered in the undergraduate chemistry curriculum. Cluster analysis confirmed this evidence, revealing four distinct foundation courses, each with unique profiles of topics covered. Faculty reported changes in content coverage over the past five years that mirror the evolving foci of inorganic chemistry research. These results potentially complicate how graduate programs evaluate incoming students’ understanding of inorganic chemistry and the design of national assessments of undergraduate inorganic chemistry courses

    Foundation Coursework in Undergraduate Inorganic Chemistry: Results from a National Survey of Inorganic Chemistry Faculty

    No full text
    A national survey of inorganic chemists explored the self-reported topics covered in foundation-level courses in inorganic chemistry at the postsecondary level; the American Chemical Society’s Committee on Professional Training defines a foundation course as one at the conclusion of which, “a student should have mastered the vocabulary, concepts, and skills required to pursue in-depth study in that area.” Anecdotal evidence suggested that more than one type of Inorganic Chemistry Foundation course was offered in the undergraduate chemistry curriculum. Cluster analysis confirmed this evidence, revealing four distinct foundation courses, each with unique profiles of topics covered. Faculty reported changes in content coverage over the past five years that mirror the evolving foci of inorganic chemistry research. These results potentially complicate how graduate programs evaluate incoming students’ understanding of inorganic chemistry and the design of national assessments of undergraduate inorganic chemistry courses

    In-Depth Coursework in Undergraduate Inorganic Chemistry: Results from a National Survey of Inorganic Chemistry Faculty

    No full text
    A national survey of inorganic chemists explored the self-reported topics covered in in-depth inorganic chemistry courses at the postsecondary level; an in-depth course is defined by the American Chemical Society’s Committee on Professional Training as a course that integrates and covers topics that were introduced in introductory and foundation courses in a more thorough manner. Anecdotal evidence suggested that more than one type of in-depth course was offered in the undergraduate chemistry curriculum. Cluster analysis confirmed this evidence and revealed three distinct types of in-depth inorganic chemistry courses with unique topical profiles. These results confirm diversity in the inorganic chemistry curriculum and the need for awareness that our students leave degree programs with varying understanding of inorganic chemistry based on the coursework offered at their respective institutions

    Great Expectations: Using an Analysis of Current Practices To Propose a Framework for the Undergraduate Inorganic Curriculum

    No full text
    The undergraduate inorganic chemistry curriculum in the United States mirrors the broad diversity of the inorganic research community and poses a challenge for the development of a coherent curriculum that is thorough, rigorous, and engaging. A recent large survey of the inorganic community has provided information about the current organization and content of the inorganic curriculum from an institutional level. The data reveal shared “core” concepts that are broadly taught, with tremendous variation in content coverage beyond these central ideas. The data provide an opportunity for a community-driven discussion about how the American Chemical Society’s Committee on Professional Training’s vision of a foundation and in-depth course for each of the five subdisciplines maps onto an inorganic chemistry curriculum that is consistent in its coverage of the core inorganic concepts, yet reflects the diversity and creativity of the inorganic community. The goal of this Viewpoint is to present the current state of the diverse undergraduate curriculum and lay a framework for an effective and engaging curriculum that illustrates the essential role inorganic chemistry plays within the chemistry community
    corecore