11 research outputs found

    Moonlighting Proteins: The Case of the Hexokinases

    Get PDF
    Moonlighting proteins are defined as proteins with two or more functions that are unrelated and independent to each other, so that inactivation of one of them should not affect the second one and vice versa. Intriguingly, all the glycolytic enzymes are described as moonlighting proteins in some organisms. Hexokinase (HXK) is a critical enzyme in the glycolytic pathway and displays a wide range of functions in different organisms such as fungi, parasites, mammals, and plants. This review discusses HXKs moonlighting functions in depth since they have a profound impact on the responses to nutritional, environmental, and disease challenges. HXKs’ activities can be as diverse as performing metabolic activities, as a gene repressor complexing with other proteins, as protein kinase, as immune receptor and regulating processes like autophagy, programmed cell death or immune system responses. However, most of those functions are particular for some organisms while the most common moonlighting HXK function in several kingdoms is being a glucose sensor. In this review, we also analyze how different regulation mechanisms cause HXK to change its subcellular localization, oligomeric or conformational state, the response to substrate and product concentration, and its interactions with membrane, proteins, or RNA, all of which might impact the HXK moonlighting functions

    Biochemical properties and subcellular localization of six members of the HXK family in maize and its metabolic contribution to embryo germination

    No full text
    Abstract Background Seed germination is a crucial process in the plant life cycle when a dramatic variation of type and sugar content occurs just as the seed is hydrated. The production of hexose 6 phosphate is a key node in different pathways that are required for a successful germination. Hexokinase (HXK) is the only plant enzyme that phosphorylates glucose (Glc), so it is key to fueling several metabolic pathways depending on their substrate specificity, metabolite regulatory responses and subcellular localization. In maize, the HXK family is composed of nine genes, but only six of them (ZmHXK4–9) putatively encode catalytically active enzymes. Here, we cloned and functionally characterized putative catalytic enzymes to analyze their metabolic contribution during germination process. Results From the six HXKs analyzed here, only ZmHXK9 has minimal hexose phosphorylating activity even though enzymatic function of all isoforms (ZmHXK4–9) was confirmed using a yeast complementation approach. The kinetic parameters of recombinant proteins showed that ZmHXK4–7 have high catalytic efficiency for Glc, fructose (Fru) and mannose (Man), ZmHXK7 has a lower Km for ATP, and together with ZmHXK8 they have lower sensitivity to inhibition by ADP, G6P and N-acetylglucosamine than ZmHXK4–6 and ZmHXK9. Additionally, we demonstrated that ZmHXK4–6 and ZmHXK9 are located in the mitochondria and their location relies on the first 30 amino acids of the N-terminal domain. Otherwise, ZmHXK7–8 are constitutively located in the cytosol. HXK activity was detected in cytosolic and mitochondrial fractions and high Glc and Fru phosphorylating activities were found in imbibed embryos. Conclusions Considering the biochemical characteristics, location and the expression of ZmHXK4 at onset of germination, we suggest that it is the main contributor to mitochondrial activity at early germination times, at 24 h other ZmHXKs also contribute to the total activity. While in the cytosol, ZmHXK7 could be responsible for the activity at the onset of germination, although later, ZmHXK8 also contributes to the total HXK activity. Our observations suggest that the HXKs may be redundant proteins with specific roles depending on carbon and ATP availability, metabolic needs, or sensor requirements. Further investigation is necessary to understand their specific or redundant physiological roles

    SWEET Transporters for the Nourishment of Embryonic Tissues during Maize Germination

    No full text
    In maize seed germination, the endosperm and the scutellum nourish the embryo axis. Here, we examined the mRNA relative amount of the SWEET protein family, which could be involved in sugar transport during germination since high [14-C]-glucose and mainly [14-C]-sucrose diffusional uptake were found in embryo tissues. We identified high levels of transcripts for SWEETs in the three phases of the germination process: ZmSWEET4c, ZmSWEET6b, ZmSWEET11, ZmSWEET13a, ZmSWEET13b, ZmSWEET14b and ZmSWEET15a, except at 0 h of imbibition where the abundance of each ZmSWEET was low. Despite the major sucrose (Suc) biosynthesis capacity of the scutellum and the high level of transcripts of the Suc symporter SUT1, Suc was not found to be accumulated; furthermore, in the embryo axis, Suc did not decrease but hexoses increased, suggesting an efficient Suc efflux from the scutellum to nourish the embryo axis. The influx of Glc into the scutellum could be mediated by SWEET4c to take up the large amount of transported sugars due to the late hydrolysis of starch. In addition, sugars regulated the mRNA amount of SWEETs at the embryo axis. These results suggest an important role for SWEETs in transporting Suc and hexoses between the scutellum and the embryo axis, and differences in SWEET transcripts between both tissues might occur because of the different sugar requirements and metabolism

    Role of pyrimidine salvage pathway in the maintenance of organellar and nuclear genome integrity

    No full text
    International audienceNucleotide biosynthesis proceeds through a de novo pathway and a salvage route. In the salvage route, free bases and/or nucleosides are recycled to generate the corresponding nucleotides. Thymidine kinase (TK) is the first enzyme in the salvage pathway to recycle thymidine nucleosides as it phosphorylates thymidine to yield thymidine monophosphate. The Arabidopsis genome contains two TK genes -TK1a and TK1b- that show similar expression patterns during development. In this work, we studied the respective roles of the two genes during early development and in response to genotoxic agents targeting the organellar or the nuclear genome. We found that the pyrimidine salvage pathway is crucial for chloroplast development and genome replication, as well as for the maintenance of its integrity, and is thus likely to play a crucial role during the transition from heterotrophy to autotrophy after germination. Interestingly, defects in TK activity could be partially compensated by supplementation of the medium with sugar, and this effect resulted from both the availability of a carbon source and the activation of the nucleotide de novo synthesis pathway, providing evidence for a compensation mechanism between two routes of nucleotide biosynthesis that depend on nutrient availability. Finally, we found differential roles of the TK1a and TK1b genes during the plant response to genotoxic stress, suggesting that different pools of nucleotides exist within the cells and are required to respond to different types of DNA damage. Altogether, our results highlight the importance of the pyrimidine salvage pathway, both during plant development and in response to genotoxic stress

    MPK6 Kinase Regulates Plasma Membrane H+-ATPase Activity in Cold Acclimation.

    Get PDF
    Cold and freezing stresses severely affect plant growth, development, and survival rate. Some plant species have evolved a process known as cold acclimation, in which plants exposed to temperatures above 0 °C trigger biochemical and physiological changes to survive freezing. During this response, several signaling events are mediated by transducers, such as mitogen activated protein kinase (MAPK) cascades. Plasma membrane H+-ATPase is a key enzyme for the plant cell life under regular and stress conditions. Using wild type and mpk3 and mpk6 knock out mutants in Arabidopsis thaliana, we explored the transcriptional, translational, and 14-3-3 protein regulation of the plasma membrane H+-ATPase activity under the acclimation process. The kinetic analysis revealed a differential profiling of the H+-ATPase activity depending on the presence or absence of MPK3 or MPK6 under non-acclimated or acclimated conditions. Negative regulation of the plasma membrane H+-ATPase activity was found to be exerted by MPK3 in non-acclimated conditions and by MPK6 in acclimated conditions, describing a novel form of regulation of this master ATPase. The MPK6 regulation involved changes in plasma membrane fluidity. Moreover, our results indicated that MPK6 is a critical regulator in the process of cold acclimation that leads to freezing tolerance and further survival

    MPK6 Kinase Regulates Plasma Membrane H+-ATPase Activity in Cold Acclimation

    No full text
    Cold and freezing stresses severely affect plant growth, development, and survival rate. Some plant species have evolved a process known as cold acclimation, in which plants exposed to temperatures above 0 °C trigger biochemical and physiological changes to survive freezing. During this response, several signaling events are mediated by transducers, such as mitogen activated protein kinase (MAPK) cascades. Plasma membrane H+-ATPase is a key enzyme for the plant cell life under regular and stress conditions. Using wild type and mpk3 and mpk6 knock out mutants in Arabidopsis thaliana, we explored the transcriptional, translational, and 14-3-3 protein regulation of the plasma membrane H+-ATPase activity under the acclimation process. The kinetic analysis revealed a differential profiling of the H+-ATPase activity depending on the presence or absence of MPK3 or MPK6 under non-acclimated or acclimated conditions. Negative regulation of the plasma membrane H+-ATPase activity was found to be exerted by MPK3 in non-acclimated conditions and by MPK6 in acclimated conditions, describing a novel form of regulation of this master ATPase. The MPK6 regulation involved changes in plasma membrane fluidity. Moreover, our results indicated that MPK6 is a critical regulator in the process of cold acclimation that leads to freezing tolerance and further survival
    corecore