37 research outputs found

    Geomagnetic field and altitude effects on the performance of future IACT arrays

    Full text link
    The performance of IACT's arrays is sensitive to the altitude and geomagnetic field (GF) of the observatory site. Both effects play important role in the region of the sub-TeV gamma-ray measurements. We investigate the influence of GF on detection rates and the energy thresholds for five possible locations of the future CTA observatory using the Monte Carlo simulations. We conclude that the detection rates of gamma rays and the energy thresholds of the arrays can be fitted with linear functions of the altitude and the component of the GF perpendicular to the shower axis core. These results can be directly extrapolated for any possible localization of the CTA. In this paper we also show the influence of both geophysical effects on the images of shower and gamma/hadron separation.Comment: 4 pages, 6 figures, two-column. Contribution to ICRC 2013 proceeding

    The background from single electromagnetic subcascades for a stereo system of air Cherenkov telescopes

    Full text link
    The MAGIC experiment, a very large Imaging Air Cherenkov Telescope (IACT) with sensitivity to low energy (E < 100 GeV) VHE gamma rays, has been operated since 2004. It has been found that the gamma/hadron separation in IACTs becomes much more difficult below 100 GeV [Albert et al 2008] A system of two large telescopes may eventually be triggered by hadronic events containing Cherenkov light from only one electromagnetic subcascade or two gamma subcascades, which are products of the single pi^0 decay. This is a possible reason for the deterioration of the experiment's sensitivity below 100 GeV. In this paper a system of two MAGIC telescopes working in stereoscopic mode is studied using Monte Carlo simulations. The detected images have similar shapes to that of primary gamma-rays and they have small sizes (mainly below 400 photoelectrons (p.e.)) which correspond to an energy of primary gamma-rays below 100 GeV. The background from single or two electromagnetic subcascdes is concentrated at energies below 200 GeV. Finally the number of background events is compared to the number of VHE gamma-ray excess events from the Crab Nebula. The investigated background survives simple cuts for sizes below 250 p.e. and thus the experiment's sensitivity deteriorates at lower energies.Comment: 15 pages, 7 figures, published in Journ.of Phys.

    Limits to the energy resolution of a single Air Cherenkov Telescope at low energies

    Full text link
    The photon density on the ground is a fundamental quantity in all experiments based on Cherenkov light measurements, e.g. in the Imaging Air Cherenkov Telescopes (IACT). IACT's are commonly and successfully used in order to search and study Very High Energy (VHE) gamma-ray sources. Difficulties with separating primary photons from primary hadrons (mostly protons) in Cherenkov experiments become larger at lower energies. I have calculated longitudinal and lateral density distributions and their fluctuations at low energies basing on Monte Carlo simulations (for vertical gamma cascades and protonic showers) to check the influence of the detector parameters on the possible measurement. Relative density fluctuations are significantly higher in proton than in photon induced showers. Taking into account the limited detector field of view (FOV) implies the changes of these calculated distributions for both types of primary particles and causes an enlargement in relative fluctuations. Absorption due to Rayleigh and Mie scattering has an impact on mean values but does not change relative fluctuations. The total number of Cherenkov photons is more sensitive to the observation height in gamma cascades than in proton showers at low primary energies. The relative fluctuations of the density do not depend on the reflector size in the investigated size range (from 240 m^2 up to 960 m^2). This implies that a single telescope with a mirror area larger than that of the MAGIC telescope cannot achieve better energy resolution than estimated and presented in this paper. The correlations between longitudinal and lateral distributions are much more pronounced for primary gamma-ray than for primary proton showers.Comment: 21 pages, 11 figures, accepted for publication in Journal of Physics

    Natural limit on the gamma/hadron separation for a stand alone air Cherenkov telescope

    Full text link
    The gamma/hadron separation in the imaging air Cherenkov telescope technique is based on differences between images of a hadronic shower and a gamma induced electromagnetic cascade. One may expect for a large telescope that a detection of hadronic events containing Cherenkov light from one gamma subcascade only is possible. In fact, simulations show that for the MAGIC telescope their fraction in the total protonic background is about 1.5% to 5.2% depending on the trigger threshold. It has been found that such images have small sizes (mainly below 400 photoelectrons) which correspond to the low energy primary gamma's (below 100 GeV). It is shown that parameters describing shapes of images from one subcascade have similar distributions to primary gamma events, so those parameters are not efficient in all methods of gamma selection. Similar studies based on MC simulations are presented also for the images from 2 gamma subcascades which are products of the same pi^0 decay. The ratio of the number of the expected background from false gamma and one pi^0 to the number of the triggered high energy photons from the Crab direction has been estimated for images with a small alpha parameter to show that the occurrence of this type of protonic shower is the reason for the difficulties with true gamma selection at low energies.Comment: 12 pages, 7 figures, published in Journal of Physics

    Constraints on the steady and pulsed very high energy gamma-ray emission from observations of PSR B1951+32/CTB 80 with the MAGIC Telescope

    Get PDF
    We report on very high energy gamma-observations with the MAGIC Telescope of the pulsar PSR B1951+32 and its associated nebula, CTB 80. Our data constrain the cutoff energy of the pulsar to be less than 32 GeV, assuming the pulsed gamma-ray emission to be exponentially cut off. The upper limit on the flux of pulsed gamma-ray emission above 75 GeV is 4.3*10^-11 photons cm^-2 sec^-1, and the upper limit on the flux of steady emission above 140 GeV is 1.5*10^-11 photons cm^-2 sec^-1. We discuss our results in the framework of recent model predictions and other studies.Comment: 7 pages, 7 figures, replaced with published versio

    The SST-1M project for the Cherenkov Telescope Array

    Get PDF
    The SST-1M project, run by a Consortium of institutes from Czech Republic, Poland and Switzerland, has been proposed as a solution for implementing the small-size telescope array of the southern site of the Cherenkov Telescope Array. The technology is a pathfinder for efficient production of cost-effective imaging air Cherenkov telescopes. We report on the main system features and recent upgrades, the performances validation and the operation campaign carried out in 2018

    Searching for VHE gamma-ray emission associated with IceCube neutrino alerts using FACT, H.E.S.S., MAGIC, and VERITAS

    Get PDF
    The realtime follow-up of neutrino events is a promising approach to searchfor astrophysical neutrino sources. It has so far provided compelling evidencefor a neutrino point source: the flaring gamma-ray blazar TXS 0506+056 observedin coincidence with the high-energy neutrino IceCube-170922A detected byIceCube. The detection of very-high-energy gamma rays (VHE, E>100GeV\mathrm{E} >100\,\mathrm{GeV}) from this source helped establish the coincidence andconstrained the modeling of the blazar emission at the time of the IceCubeevent. The four major imaging atmospheric Cherenkov telescope arrays (IACTs) -FACT, H.E.S.S., MAGIC, and VERITAS - operate an active follow-up program oftarget-of-opportunity observations of neutrino alerts sent by IceCube. Thisprogram has two main components. One are the observations of known gamma-raysources around which a cluster of candidate neutrino events has been identifiedby IceCube (Gamma-ray Follow-Up, GFU). Second one is the follow-up of singlehigh-energy neutrino candidate events of potential astrophysical origin such asIceCube-170922A. GFU has been recently upgraded by IceCube in collaborationwith the IACT groups. We present here recent results from the IACT follow-upprograms of IceCube neutrino alerts and a description of the upgraded IceCubeGFU system.<br
    corecore