13 research outputs found

    Graphene-Based Coating to Mitigate Biofilm Development in Marine Environments

    Get PDF
    Due to its several economic and ecological consequences, biofouling is a widely recognized concern in the marine sector. The search for non-biocide-release antifouling coatings has been on the rise, with carbon-nanocoated surfaces showing promising activity. This work aimed to study the impact of pristine graphene nanoplatelets (GNP) on biofilm development through the representative marine bacteria Cobetia marina and to investigate the antibacterial mechanisms of action of this material. For this purpose, a flow cytometric analysis was performed and a GNP/polydimethylsiloxane (PDMS) surface containing 5 wt% GNP (G5/PDMS) was produced, characterized, and assessed regarding its biofilm mitigation potential over 42 days in controlled hydrodynamic conditions that mimic marine environments. Flow cytometry revealed membrane damage, greater metabolic activity, and endogenous reactive oxygen species (ROS) production by C. marina when exposed to GNP 5% (w/v) for 24 h. In addition, C. marina biofilms formed on G5/PDMS showed consistently lower cell count and thickness (up to 43% reductions) than PDMS. Biofilm architecture analysis indicated that mature biofilms developed on the graphene-based surface had fewer empty spaces (34% reduction) and reduced biovolume (25% reduction) compared to PDMS. Overall, the GNP-based surface inhibited C. marina biofilm development, showing promising potential as a marine antifouling coating

    Production and Characterization of Graphene Oxide Surfaces against Uropathogens

    Get PDF
    Graphene and its functionalized derivatives have been increasingly applied in the biomedi-cal field, particularly in the production of antimicrobial and anti-adhesive surfaces. This study aimed to evaluate the performance of graphene oxide (GO)/polydimethylsiloxane (PDMS) composites against Staphylococcus aureus and Pseudomonas aeruginosa biofilms. GO/PDMS composites containing different GO loadings (1, 3, and 5 wt.%) were synthesized and characterized regarding their morphol-ogy, roughness, and hydrophobicity, and tested for their ability to inhibit biofilm formation under conditions that mimic urinary tract environments. Biofilm formation was assessed by determining the number of total and culturable cells. Additionally, the antibacterial mechanisms of action of GO were investigated for the tested uropathogens. Results indicated that the surfaces containing GO had greater roughness and increased hydrophobicity than PDMS. Biofilm analysis showed that the 1 wt.% GO/PDMS composite was the most effective in reducing S. aureus biofilm formation. In oppo-sition, P. aeruginosa biofilms were not inhibited by any of the synthesized composites. Furthermore, 1% (w/v) GO increased the membrane permeability, metabolic activity, and endogenous reactive oxygen species (ROS) synthesis in S. aureus. Altogether, these results suggest that GO/PDMS com-posites are promising materials for application in urinary catheters, although further investigation is required

    How do Graphene Composite Surfaces Affect the Development and Structure of Marine Cyanobacterial Biofilms?

    Get PDF
    The progress of nanotechnology has prompted the development of novel marine antifouling coatings. In this study, the influence of a pristine graphene nanoplatelet (GNP)-modified surface in cyanobacterial biofilm formation was evaluated over a long-term assay using an in vitro platform which mimics the hydrodynamic conditions that prevail in real marine environments. Surface characterization by Optical Profilometry and Scanning Electron Microscopy has shown that the main difference between GNP incorporated into a commercially used epoxy resin (GNP composite) and both control surfaces (glass and epoxy resin) was related to roughness and topography, where the GNP composite had a roughness value about 1000 times higher than control surfaces. The results showed that, after 7 weeks, the GNP composite reduced the biofilm wet weight (by 44%), biofilm thickness (by 54%), biovolume (by 82%), and surface coverage (by 64%) of cyanobacterial biofilms compared to the epoxy resin. Likewise, the GNP-modified surface delayed cyanobacterial biofilm development, modulated biofilm structure to a less porous arrangement over time, and showed a higher antifouling effect at the biofilm maturation stage. Overall, this nanocomposite seems to have the potential to be used as a long-term antifouling material in marine applications. Moreover, this multifactorial study was crucial to understanding the interactions between surface properties and cyanobacterial biofilm development and architecture over time
    corecore