15 research outputs found

    Lithium intercalation in nanostructured thin films of a mixed-valence layered vanadium oxide using an ionic liquid electrolyte

    Get PDF
    AbstractNanostructured thin films of a mixed-valence, layered vanadium oxide were prepared using layer-by-layer deposition. The thin films were characterized by electronic (UV–vis) spectroscopy, quartz crystal microbalance, profilometry and scanning electron microscopy techniques. The highest charge capacity was obtained for films that consisted of 25 bilayers. The electrochemical characterization of the films was performed in conventional organic solvent and ionic liquid (IL) based electrolytes. The results revealed better performance, in terms of stability during consecutive charge/discharge cycles, when ILs were employed. This can be attributed to several factors, including reduced mechanical stress caused by insertion of more than 1 mol of Li+ per mol of V5+ in the film structure, decrease of crystallinity in the electrode material during the first few charge/discharge cycles and/or formation of a more compatible SEI. Nanostructured thin films of layered vanadium oxide prepared using layer-by-layer deposition showed potential for applications in lithium microbatteries

    Synthesis of Fe/Ti oxides from a single source alkoxide precursor under inert atmosphere

    Get PDF
    The heterometal alkoxide [FeCl{Ti2(OPr i)9}] (1) was employed as a single source precursor for the preparation of Fe/Ti oxides under inert atmosphere. Three different synthetic procedures were adopted in the processing of 1, either employing aqueous HNO3 or HCl solutions, or in the absence of mineral acids. Products were characterised by powder X-ray diffractometry, scanning electron microscopy combined with energy dispersive X-ray spectroscopy (SEM/EDS) and Raman, electron paramagnetic resonance (EPR) and Mössbauer spectroscopies. Oxide products contained titanium(IV) and either iron(III) or iron(II), depending on reaction conditions and thermal treatment temperatures. An interesting iron(III)→iron(II) reduction was observed at 1000 ºC in the HNO3-containing system, leading to the detection of ilmenite (FeTiO3). SEM/EDS studies revealed a highly heterogeneous metal distribution in all products, possibly related to the presence of a significant content of carbon and of structural defects (oxygen vacancies) in the solids.O alcóxido heterometálico [FeCl{Ti2(OPr i)9}] (1) foi utilizado como um precursor de fonte única para a preparação de óxidos de Fe/Ti sob atmosfera inerte. Três procedimentos sintéticos distintos foram adotados no processamento de 1, com o emprego de soluções aquosas ácidas (HNO3 ou HCl), ou na ausência de ácido mineral. Os produtos foram caracterizados por difratometria de raios X (pó), microscopia eletrônica de varredura combinada com espectroscopia de dispersão de raios X (MEV/EDS) e espectroscopias Raman, de ressonância paramagnética eletrônica (RPE) e Mössbauer. Os óxidos produzidos contêm titânio(IV) e ferro(III) (ou ferro(II)), dependendo das condições de reação e das temperaturas de tratamento térmico. Uma interessante redução de ferro(III) a ferro(II), que levou à obtenção de ilmenita (FeTiO3), foi observada a 1000 ºC no sistema contendo HNO3. Estudos por MEV/EDS revelaram uma distribuição altamente heterogênea dos metais em todos os produtos, possivelmente relacionada com a presença de um conteúdo significativo de carbono e de defeitos estruturais (vacâncias de oxigênio) nos sólidos.Biotechnology and Biological Sciences Research Council (BBSRC) U

    An oxalate-bridged oxidovanadium(iv) binuclear complex that improves the in vitro cell uptake of a fluorescent glucose analog

    Get PDF
    The centrosymmetric oxidovanadium(IV) complex (Et 3NH) 2[{VO(OH 2)(ox)} 2(μ–ox)] (I), where ox 2− = oxalate, was synthesized and characterized by X-ray diffraction (single-crystal and powder, PXRD), thermogravimetric (TGA), magnetic susceptibility (at room temperature) and spectroscopic analyses (infrared, Raman and electron paramagnetic resonance, EPR, spectroscopies). In the solid state, each vanadium center is coordinated by the oxygen atoms of a bis-bidentate oxalate bridging ligand, a terminal oxalate, an oxo group and one water molecule. The electronic structure of the binuclear complex was investigated by density functional theory (DFT) calculations, both in vacuum and in a simulated aqueous environment, employing the ωB97XD functional and the def2TZVP basis set. The cytotoxicity of I was evaluated in vitro in the human hepatocellular carcinoma cell line HepG2, giving an IC 50 value of 15.67 µmol L −1 after incubation for 24 h. The EPR analysis of I in aqueous solution suggested the maintenance of the binuclear structure, while in the hyperglycemic medium DMEM the complex suffers dissociation to give a mononuclear oxidovanadium(IV) species. HepG2 cell treatment with 0.10 and 0.50 µmol L −1 of I in DMEM increased 2-NBDG (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose) uptake significantly (up to 91% as compared to HepG2 in hyperglycemic condition, 59%). These results indicate a promising activity of I to be investigated further in additional antidiabetic studies

    Seven-coordinate Tb3+ complexes with 90% quantum yields: High-performance examples of combined singlet- and triplet-to-Tb3+ energy-transfer pathways

    Get PDF
    Seven-coordinate, pentagonal-bipyramidal (PBP) complexes [Ln(bbpen)Cl] and [Ln(bbppn)Cl], in which Ln = Tb3+ (products I and II), Eu3+ (III and IV), and Gd3+ (V and VI), with bbpen2- = N,N′-bis(2-oxidobenzyl)-N,N′-bis(pyridin-2-ylmethyl)ethylenediamine and bbppn2- = N,N′-bis(2-oxidobenzyl)-N,N′-bis(pyridin-2-ylmethyl)-1,2-propanediamine, were synthesized and characterized by single-crystal X-ray diffraction analysis, alternating-current magnetic susceptibility measurements, and photoluminescence (steady-state and time-resolved) spectroscopy. Under a static magnetic field of 0.1 T, the Tb3+ complexes I and II revealed single-ion-magnet behavior. Also, upon excitation at 320 nm at 300 K, I and II presented very high absolute emission quantum yields (0.90 ± 0.09 and 0.92 ± 0.09, respectively), while the corresponding Eu3+ complexes III and IV showed no photoluminescence. Detailed theoretical calculations on the intramolecular energy-transfer rates for the Tb3+ products indicated that both singlet and triplet ligand excited states contribute efficiently to the overall emission performance. The expressive quantum yields, QLnL, measured for I and II in the solid state and a dichloromethane solution depend on the excitation wavelength, being higher at 320 nm. Such a dependence was rationalized by computing the intersystem crossing rates (WISC) and singlet fluorescence lifetimes (τS) related to the population dynamics of the S1 and T1 levels. Thin films of product II showed high air stability and photostability upon continuous UV illumination, which allowed their use as downshifting layers in a green light-emitting device (LED). The prototypes presented a luminous efficacy comparable with those found in commercial LED coatings, without requiring encapsulation or dispersion of II in host matrixes. The results indicate that the PBP environment determined by the ethylenediamine (en)-based ligands investigated in this work favors the outstanding optical properties in Tb3+ complexes. This work presents a comprehensive structural, chemical, and spectroscopic characterization of two Tb3+ complexes of mixed-donor, en-based ligands, focusing on their outstanding optical properties. They constitute good molecular examples in which both triplet and singlet excited states provide energy to the Tb3+ ion and lead to high values of QLnL

    Vanadium-lithium alkoxides:Synthesis, structure, spectroscopic characterisation and accidental degradation of silicone grease

    No full text
    Two complexes containing both vanadium and lithium, [V6Li10O8(ONep)14{OSi(Me)2 (ONep)}2] (1) and [V(ONep)3(μ-ONep)2Li(thf)2] (2), Nep = neopentyl, Me = methyl and thf = tetrahydrofuran, have been isolated in high yield and characterised by a number of techniques including X-band electron paramagnetic resonance (EPR) and 29Si{1H} nuclear magnetic resonance (NMR) spectroscopies, magnetic susceptibility measurements and single crystal X-ray diffractometry. Despite the similar preparation conditions, the two products present remarkably distinctive structural features: complex 2 is a binuclear adduct of "V(ONep)4" and "Li(ONep)(thf)2", while 1 is a mixed-valence, 16-metal aggregate. The large molecular oxoalkoxide 1 also contains silanolate units, {OSi(Me2)(ONep)} -, produced by nucleophilic attack of neopentoxide groups on Si-O bonds of silicone grease accidentally dissolved in the reaction media. Both products have promising applications in organic and inorganic synthesis, including the preparation of uncommon V-Li and/or Si containing oxides

    Stability in solution and chemoprotection by octadecavanadates(IV/V) in E. coli cultures

    No full text
    Two mixed-valence octadecavanadates, (NH 4) 2(Me 4N) 5[V IV 12V V 6O 42I]·Me 4NI·5H 2O (V 18I) and [{K 6(OH 2) 12V IV 11V V 7O 41(PO 4)·4H 2O} n] (V 18P), were synthesized and characterized by single-crystal X-ray diffraction analysis and FTIR, Raman, 51V NMR, EPR and UV/Vis/NIR spectroscopies. The chemoprotective activity of V 18I and V 18P towards the alkylating agent diethyl sulfate was assessed in E. coli cultures. The complex V 18I was nontoxic in concentrations up to 5.0 mmol L −1, while V 18P presented moderate toxicity in the concentration range 0.10 - 10 mmol L −1. Conversely, a ca. 35% enhancement in culture growth as compared to cells treated only with diethyl sulfate was observed upon addition of V 18I (0.10 to 2.5 mmol L −1), while the combination of diethyl sulfate with V 18P increased the cytotoxicity presented by diethyl sulfate alone. 51V NMR and EPR speciation studies showed that V 18I is stable in solution, while V 18P suffers partial breakage to give low nuclearity oxidometalates of vanadium(V) and (IV). According to the results, the chemoprotective effect depends strongly on the direct reactivity of the polyoxidovanadates (POV) towards the alkylating agent. The reaction of diethyl sulfate with V 18I apparently produces a new, rearranged POV instead of poorly-reactive breakage products, while V 18P shows the formation and subsequent consumption of low-nuclearity species. The correlation of this chemistry with that of other mixed-valence polyoxidovanadates, [H 6V IV 2V V 12O 38PO 4] 5- (V 14) and [V IV 8V V 7O 36Cl] 6- (V 15), suggests a relationship between stability in solution and chemoprotective performance

    Effects of Decavanadate Salts with Organic and Inorganic Cations on Escherichia coli, Giardia intestinalis, and Vero Cells

    No full text
    Decavanadate salts with nicotinamide (3-pyridinecarboxamide, 3-pca) and isonicotinamide (4-pyridinecarboxamide, 4-pca) in both neutral and protonated forms, (3-Hpca) 4 [H 2 V 10 O 28 ]·2H 2 O·2(3-pca) (complex I) and (4-Hpca) 4 [H 2 V 10 O 28 ]·2(4-pca) (complex II), have been synthesized and characterized by vibrational spectroscopy (infrared and Raman), thermogravimetric analysis (TGA), 51 V NMR, and single-crystal X-ray diffraction analysis. The effects of sodium decavanadate (henceforth called NaV 10 ) and compounds I and II on Escherichia coli, Giardia intestinalis, and Vero (African green monkey epithelial kidney) cells were evaluated. Enhanced growth inhibitory activity against E. coli cultures was observed upon treatment with products I and II when compared to that with NaV 10 (GI 50 values of 2.8, 4.0, and 11 mmol L -1 , respectively), as well as lower cell viability as measured by the intake of propidium iodide (PI). Exposure of Giardia trophozoites to NaV 10 and II revealed reduction in trophozoite viability (GI 50 values of ca. 10 μmol L -1 ) and affected the parasite adherence to both polystyrene culture tubes and a monolayer of Vero cells, even at low concentrations. A lesser effect on Giardia was shown for I. Furthermore, all three compounds were significantly less toxic to Vero cells than the reference drug, albendazole, employed in the treatment of giardiasis. Toxicity reports of oxidovanadium compounds toward Giardia are unprecedented and open a path to the development of new therapeutic agents
    corecore