3 research outputs found

    Indeterminate thyroid cytology: Detecting malignancy using analysis of nuclear images

    Get PDF
    Background: Thyroid nodules diagnosed as 'atypia of undetermined significance/ follicular lesion of undetermined significance' (AUS/FLUS) or 'follicular neoplasm/ suspected follicular neoplasm' (FN/SFN), according to Bethesda’s classification, represena challenge in clinical practice. Computerized analysis of nuclear images (CANI) could be a useful tool for these cases. Our aim was to evaluate the ability of CANI to correctly classify AUS/FLUS and FN/SFN thyroid nodules for malignancy. Methods: We studied 101 nodules cytologically classified as AUS/FLUS (n = 68) or FN/SFN (n = 33) from 97 thyroidectomy patients. Slides with cytological material were submitted for manual selection and analysis of the follicular cell nuclei for morphometric and texture parameters using ImageJ software. The histologically benign and malignant lesions were compared for such parameters which were then evaluated for the capacity to predict malignancy using the classification and regression trees gini model. The intraclass coefficient of correlation was used to evaluate method reproducibility. Results: In AUS/FLUS nodule analysis, the benign and malignant nodules differed for entropy (P < 0.05), while the FN/SFN nodules differed for fractal analysis, coefficient of variation (CV) of roughness, and CV-entropy (P < 0.05). Considering the AUS/FLUS and FN/SFN nodules separately, it correctly classified 90.0 and 100.0% malignant nodules, with a correct global classification of 94.1 and 97%, respectively. We observed that reproducibility was substantially or nearly complete (0.61–0.93) in 10 of the 12 nuclear parameters evaluated. Conclusion: CANI demonstrated a high capacity for correctly classifying AUS/FLUS and FN/SFN thyroid nodules for malignancy. This could be a useful method to help increase diagnostic accuracy in the indeterminate thyroid cytology.This study received financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; processes number 2016/14987-0 and number 2016/14988-6). Further funding through 'Fundação para a Ciência e Tecnologi' – FCT and FEDER 'Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020'; by Operacional Programme for Competitiveness and Internationalization 'POCI' (Grant no. POCI-01-0145-FEDER-007274); by the 'Advancing cancer research: from basic knowledge to application' (grant no. NORTE-01-0145-FEDER-000029); and by the 'Projetos Estruturados de I & D & I', funded by Norte 2020 – Programa Operacional Regional do Norte

    How are legal matters related to the access of traditional knowledge being considered in the scope of ethnobotany publications in Brazil?

    Full text link

    Integration of miRNA and mRNA expression profiles reveals microRNA-regulated networks during muscle wasting in cardiac cachexia

    Get PDF
    Cardiac cachexia (CC) is a common complication of heart failure (HF) associated with muscle wasting and poor patient prognosis. Although different mechanisms have been proposed to explain muscle wasting during CC, its pathogenesis is still not understood. Here, we described an integrative analysis between miRNA and mRNA expression profiles of muscle wasting during CC. Global gene expression profiling identified 1,281 genes and 19 miRNAs differentially expressed in muscle wasting during CC. Several of these deregulated genes are known or putative targets of the altered miRNAs, including miR-29a-3p, miR-29b-3p, miR-210-5p, miR-214, and miR-489. Gene ontology analysis on integrative mRNA/miRNA expression profiling data revealed miRNA interactions affecting genes that regulate extra-cellular matrix (ECM) organization, proteasome protein degradation, citric acid cycle and respiratory electron transport. We further identified 11 miRNAs, including miR-29a-3p and miR-29b-3p, which target 21 transcripts encoding the collagen proteins related to ECM organization. Integrative miRNA and mRNA global expression data allowed us to identify miRNA target genes involved in skeletal muscle wasting in CC. Our functional experiments in C2C12 cells confirmed that miR-29b down-regulates collagen genes and contributes to muscle cell atrophy. Collectively, our results suggest that key ECM-associated miRNAs and their target genes may contribute to CC in HF
    corecore