2 research outputs found

    A list of land plants of Parque Nacional do Caparaó, Brazil, highlights the presence of sampling gaps within this protected area

    Get PDF
    Brazilian protected areas are essential for plant conservation in the Atlantic Forest domain, one of the 36 global biodiversity hotspots. A major challenge for improving conservation actions is to know the plant richness, protected by these areas. Online databases offer an accessible way to build plant species lists and to provide relevant information about biodiversity. A list of land plants of “Parque Nacional do Caparaó” (PNC) was previously built using online databases and published on the website "Catálogo de Plantas das Unidades de Conservação do Brasil." Here, we provide and discuss additional information about plant species richness, endemism and conservation in the PNC that could not be included in the List. We documented 1,791 species of land plants as occurring in PNC, of which 63 are cited as threatened (CR, EN or VU) by the Brazilian National Red List, seven as data deficient (DD) and five as priorities for conservation. Fifity-one species were possible new ocurrences for ES and MG states

    Topography and vegetation structure mediate drought impacts on the understory of the South American Atlantic Forest

    No full text
    Droughts have increased in frequency, duration, and severity across most of the tropics but their effect on forest communities remain not fully understood. Here we assessed the effects of a severe El Niño-induced drought event on dominant and low abundance understory plant species and the consequent impacts on ecosystem functions in the South American Atlantic Forest. We established 20 permanent plots with contrasting vegetation structure and topography. In each plot, we measured the stem diameter at breast height (DBH) of every understory woody plant (i.e. 1 to 10 cm stem diameter) before and after a severe 4-year drought event to calculate relative growth and mortality rates after drought. Litter biomass, litter nutrient content and soil nutrients, as well as tree canopy cover, were also quantified. High stem density reduced survival to drought for both dominant and low abundance understory woody species. The growth rate of dominant and low abundance species was lower on steeper slopes during the drought. Dominant species were the main contributor of litter biomass production whereas low abundance species were important drivers of litter quality. Overall, our findings suggest that habitats with low tree density and larger trees on flat areas, such as in valleys, can act as refuges for understory plant species during drought periods. These habitats are resource-rich, providing nutrients and water during unfavorable drought periods and might improve forest resilience to climate change in the long term.</p
    corecore