10 research outputs found
Reconstructing boulder deposition histories: extreme wave signatures on a complex rocky shoreline of Malta
The Ć»onqor coastline, southeast Malta, displays an exceptional range of geomorphic signatures of extreme coastal events. This paper brings together evidence acquired from a field survey, analysis of time-sequential imagery, and hydrodynamic modelling to investigate the histories of boulder groups identified by their intrinsic and contextual characteristics. Clear differences are revealed between the distribution of boulders recently moved and those of considerable age. Tracking the movement of boulders since 1957 confirms that storms of surprisingly frequent interval are capable of complex boulder movements, including lifting of megaclasts. Scrutiny of the ancient boulders, including weathering features and fascinating landward-facing (reverse) imbrication, cautiously suggests tsunami as the agent for their emplacement. A novel method is developed for depicting the velocity decay profiles of hypothetical waves, which overcomes some of the limitations of the Nott approach. Applied here, the wave run-up context further sets the ancient movers apart from their recent mover companions. The combined evidence implies a palimpsestic landscape where storm waves are regular geomorphic agents that add to and rework the distribution of boulders close to the shoreline, but over long time periods the landscape becomes reset by tsunami—a concept that is of value to agencies in Malta responsible for coastal safety, planning and management
Spatial analysis of eroding surface micro-topographies
Analysis of the spatial variability in erosion rates at the micro-scale has the potential to improve our understanding
of how shore platforms erode. Comparing the erosion rate of a single measurement reading with the
erosion rate of other increasingly distant readings would indicate whether average variation in erosion rate is
homogeneous and at what spatial scale. Little variation in erosion rate from one measurement reading as distance
increased would indicate that an area is eroding homogeneously and that the surface measured is responding as a
single spatial unit. An increase or decrease in the variation in erosion rate difference with increasing distance
from one reading would suggest that the area was not acting as a single spatial unit and that surface responses
differ with scale. This study used a two-year dataset of traversing micro-erosion meter (TMEM) readings,
collected from two limestone shore platforms on the north of Malta, at Ponta tal-Qammieħ and Blata l-Bajda, in
order to explore the relationship between difference in erosion rate and distance from TMEM readings. A
Microsoft Excel macro was developed and applied to calculate and analyse the average variation in erosion rate
difference between all possible pairs of measurement readings over a set of fixed distances. The resultant analysis
suggests that there are some consistent patterns between measurement periods and locations on a platform in
terms of how erosion rate difference varies with distance between readings. These are not simple relationships to
either characterise or explain but nevertheless, they suggest variations in how the same surface responds to
erosional forces. These findings are significant for erosion research as they imply that spatial scales to erosion
within even small areas may impact upon the representativeness of an average erosional loss for the platform
site. It raises issues about how representative rates really are and contributes to the discussion about the wider
understanding of erosion rates across spatial scale.peer-reviewe
Recommended from our members
Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial.
Importance: Evidence regarding corticosteroid use for severe coronavirus disease 2019 (COVID-19) is limited. Objective: To determine whether hydrocortisone improves outcome for patients with severe COVID-19. Design, Setting, and Participants: An ongoing adaptive platform trial testing multiple interventions within multiple therapeutic domains, for example, antiviral agents, corticosteroids, or immunoglobulin. Between March 9 and June 17, 2020, 614 adult patients with suspected or confirmed COVID-19 were enrolled and randomized within at least 1 domain following admission to an intensive care unit (ICU) for respiratory or cardiovascular organ support at 121 sites in 8 countries. Of these, 403 were randomized to open-label interventions within the corticosteroid domain. The domain was halted after results from another trial were released. Follow-up ended August 12, 2020. Interventions: The corticosteroid domain randomized participants to a fixed 7-day course of intravenous hydrocortisone (50 mg or 100 mg every 6 hours) (nâ=â143), a shock-dependent course (50 mg every 6 hours when shock was clinically evident) (nâ=â152), or no hydrocortisone (nâ=â108). Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of ICU-based respiratory or cardiovascular support) within 21 days, where patients who died were assigned -1 day. The primary analysis was a bayesian cumulative logistic model that included all patients enrolled with severe COVID-19, adjusting for age, sex, site, region, time, assignment to interventions within other domains, and domain and intervention eligibility. Superiority was defined as the posterior probability of an odds ratio greater than 1 (threshold for trial conclusion of superiority >99%). Results: After excluding 19 participants who withdrew consent, there were 384 patients (mean age, 60 years; 29% female) randomized to the fixed-dose (nâ=â137), shock-dependent (nâ=â146), and no (nâ=â101) hydrocortisone groups; 379 (99%) completed the study and were included in the analysis. The mean age for the 3 groups ranged between 59.5 and 60.4 years; most patients were male (range, 70.6%-71.5%); mean body mass index ranged between 29.7 and 30.9; and patients receiving mechanical ventilation ranged between 50.0% and 63.5%. For the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively, the median organ support-free days were 0 (IQR, -1 to 15), 0 (IQR, -1 to 13), and 0 (-1 to 11) days (composed of 30%, 26%, and 33% mortality rates and 11.5, 9.5, and 6 median organ support-free days among survivors). The median adjusted odds ratio and bayesian probability of superiority were 1.43 (95% credible interval, 0.91-2.27) and 93% for fixed-dose hydrocortisone, respectively, and were 1.22 (95% credible interval, 0.76-1.94) and 80% for shock-dependent hydrocortisone compared with no hydrocortisone. Serious adverse events were reported in 4 (3%), 5 (3%), and 1 (1%) patients in the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively. Conclusions and Relevance: Among patients with severe COVID-19, treatment with a 7-day fixed-dose course of hydrocortisone or shock-dependent dosing of hydrocortisone, compared with no hydrocortisone, resulted in 93% and 80% probabilities of superiority with regard to the odds of improvement in organ support-free days within 21 days. However, the trial was stopped early and no treatment strategy met prespecified criteria for statistical superiority, precluding definitive conclusions. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 nonâcritically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (nâ=â257), ARB (nâ=â248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; nâ=â10), or no RAS inhibitor (control; nâ=â264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ supportâfree days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ supportâfree days among critically ill patients was 10 (â1 to 16) in the ACE inhibitor group (nâ=â231), 8 (â1 to 17) in the ARB group (nâ=â217), and 12 (0 to 17) in the control group (nâ=â231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ supportâfree days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
Forgotten fields: mid-nineteenth century land use and characterisation in the South Downs National Park using the tithe surveys of England and Wales.
The map and underlying geodatabase presented here at a scale of 1:25,000 (Main map) covers approximately 300â
km2 of the catchment of the lower Rother valley in West Sussex, within the South Downs National Park, southern England. It offers a unique view of land use based on the Tithe Surveys created during the early part of 1840s. This new and rigorously compiled empirical material serves as an exceptionally robust research resource to inform river catchment management planning, with potential to guide landscape restoration, steer sustainable farming activities and, conceivably, to facilitate scenario modelling of plausible land use futures during a period of great uncertainty regarding rural land management in the United Kingdom. The current map and geodatabase are the products of the Forgotten Fields Project, the intention being to extend the coverage to neighbouring catchments and thus provide a large-scale mapping resource and information portal for wide-ranging land management applications
Quantifying River Channel Stability at the Basin Scale
This paper examines the feasibility of a basinâscale scheme for characterising and quantifying river reaches in terms of their geomorphological stability status and potential for morphological adjustment based on auditing stream energy. A River Energy Audit Scheme (REAS) is explored, which involves integrating stream power with flow duration to investigate the downstream distribution of Annual Geomorphic Energy (AGE). This measure represents the average annual energy available with which to perform geomorphological work in reshaping the channel boundary. Changes in AGE between successive reaches might indicate whether adjustments are likely to be led by erosion or deposition at the channel perimeter. A case study of the River Kent in Cumbria, UK, demonstrates that basinâwide application is achievable without excessive field work and data processing. However, in addressing the basin scale, the research found that this is inevitably at the cost of a number of assumptions and limitations, which are discussed herein. Technological advances in remotely sensed data capture, developments in image processing and emerging GIS tools provide the nearâterm prospect of fully quantifying river channel stability at the basin scale, although as yet not fully realized. Potential applications of this type of approach include systemâwide assessment of river channel stability and sensitivity to landâuse or climate change, and informing strategic planning for river channel and flood risk management