14,613 research outputs found

    Gravitational energy in a small region for the modified Einstein and Landau-Lifshitz pseudotensors

    Full text link
    The purpose of the classical Einstein and Landau-Lifshitz pseudotensors is for determining the gravitational energy. Neither of them can guarantee a positive energy in holonomic frames. In the small sphere approximation, it has been required that the quasilocal expression for the gravitational energy-momentum density should be proportional to the Bel-Robinson tensor BαβμνB_{\alpha\beta\mu\nu}. However, we propose a new tensor VαβμνV_{\alpha\beta\mu\nu} which is the sum of certain tensors SαβμνS_{\alpha\beta\mu\nu} and KαβμνK_{\alpha\beta\mu\nu}, it has certain properties so that it gives the same gravitational "energy-momentum" content as BαβμνB_{\alpha\beta\mu\nu} does. Moreover, we show that a modified Einstein pseudotensor turns out to be one of the Chen-Nester quasilocal expressions, while the modified Landau-Lifshitz pseudotensor becomes the Papapetrou pseudotensor; these two modified pseudotensors have positive gravitational energy in a small region.Comment:

    Algebraic Rainich conditions for the tensor V

    Full text link
    Algebraic conditions on the Ricci tensor in the Rainich-Misner-Wheeler unified field theory are known as the Rainich conditions. Penrose and more recently Bergqvist and Lankinen made an analogy from the Ricci tensor to the Bel-Robinson tensor BαβμνB_{\alpha\beta\mu\nu}, a certain fourth rank tensor quadratic in the Weyl curvature, which also satisfies algebraic Rainich-like conditions. However, we found that not only does the tensor BαβμνB_{\alpha\beta\mu\nu} fulfill these conditions, but so also does our recently proposed tensor VαβμνV_{\alpha\beta\mu\nu}, which has many of the desirable properties of BαβμνB_{\alpha\beta\mu\nu}. For the quasilocal small sphere limit restriction, we found that there are only two fourth rank tensors BαβμνB_{\alpha\beta\mu\nu} and VαβμνV_{\alpha\beta\mu\nu} which form a basis for good energy expressions. Both of them have the completely trace free and causal properties, these two form necessary and sufficient conditions. Surprisingly either completely traceless or causal is enough to fulfill the algebraic Rainich conditions. Furthermore, relaxing the quasilocal restriction and considering the general fourth rank tensor, we found two remarkable results: (i) without any symmetry requirement, the algebraic Rainich conditions only require totally trace free; (ii) with a symmetry requirement, we recovered the same result as in the quasilocal small sphere limit.Comment: 17 page

    Gravitational energy from a combination of a tetrad expression and Einstein's pseudotensor

    Full text link
    The energy-momentum for a gravitating system can be considered by the tetard teleparalle gauge current in orthonormal frames. Whereas the Einstein pseudotensor used holonomic frames. Tetrad expression itself gives a better result for gravitational energy than Einstein's. Inspired by an idea of Deser, we found a gravitational energy expression which enjoys the positive energy property by combining the tetrad expression and the Einstein pseudotensor, i.e., the connection coefficient has a form appropriate to a suitable intermediate between orthonormal and holonomic frames.Comment: 5 page

    New positive small vacuum region gravitational energy expressions

    Full text link
    We construct an infinite number of new holonomic quasi-local gravitational energy-momentum density pseudotensors with good limits asymptotically and in small regions, both materially and in vacuum. For small vacuum regions they are all a positive multiple of the Bel-Robinson tensor and consequently have positive energy.Comment: 4 page

    Superstructure high efficiency photovoltaics

    Get PDF
    A novel class of photovoltaic cascade structures is introduced which features multijunction upper subcells. These superstructure high efficiency photovoltaics (SHEP's) exhibit enhanced upper subcell spectral response because of the additional junctions which serve to reduce bulk recombination losses by decreasing the mean collection distance for photogenerated minority carriers. Two possible electrical configurations were studied and compared: a three-terminal scheme that allows both subcells to be operated at their individual maximum power points and a two-terminal configuration with an intercell ohmic contact for series interconnection. The three-terminal devices were found to be superior both in terms of beginning-of-life expectancy and radiation tolerance. Realistic simulations of three-terminal AlGaAs/GaAs SHEP's show that one sun AMO efficiencies in excess of 26 percent are possible

    Cosmological Radiation Hydrodynamics with ENZO

    Full text link
    We describe an extension of the cosmological hydrodynamics code ENZO to include the self-consistent transport of ionizing radiation modeled in the flux-limited diffusion approximation. A novel feature of our algorithm is a coupled implicit solution of radiation transport, ionization kinetics, and gas photoheating, making the timestepping for this portion of the calculation resolution independent. The implicit system is coupled to the explicit cosmological hydrodynamics through operator splitting and solved with scalable multigrid methods. We summarize the numerical method, present a verification test on cosmological Stromgren spheres, and then apply it to the problem of cosmological hydrogen reionization.Comment: 14 pages, 3 figures, to appear in Recent Directions in Astrophysical Quantitative Spectroscopy and Radiation Hydrodynamics, Ed. I. Hubeny, American Institute of Physics (2009

    On the energy of homogeneous cosmologies

    Full text link
    An energy for the homogeneous cosmological models is presented. More specifically, using an appropriate natural prescription, we find the energy within any region with any gravitational source for a large class of gravity theories--namely those with a tetrad description--for all 9 Bianchi types. Our energy is given by the value of the Hamiltonian with homogeneous boundary conditions; this value vanishes for all regions in all Bianchi class A models, and it does not vanish for any class B model. This is so not only for Einstein's general relativity but, moreover, for the whole 3-parameter class of tetrad-teleparallel theories. For the physically favored one parameter subclass, which includes the teleparallel equivalent of Einstein's theory as an important special case, the energy for all class B models is, contrary to expectation, negative.Comment: 11 pages, reformated with minor change

    Topological superconductivity and Majorana fermions in hybrid structures involving cuprate high-T_c superconductors

    Full text link
    The possibility of inducing topological superconductivity with cuprate high-temperature superconductors (HTSC) is studied for various heterostructures. We first consider a ballistic planar junction between a HTSC and a metallic ferromagnet. We assume that inversion symmetry breaking at the tunnel barrier gives rise to Rashba spin-orbit coupling in the barrier and allows equal-spin triplet superconductivity to exist in the ferromagnet. Bogoliubov-de Gennes equations are obtained by explicitly modeling the barrier, and taking account of the transport anisotropy in the HTSC. By making use of the self-consistent boundary conditions and solutions for the barrier and HTSC regions, an effective equation of motion for the ferromagnet is obtained where Andreev scattering at the barrier is incorporated as a boundary condition for the ferromagnetic region. For a ferromagnet layer deposited on a (100) facet of the HTSC, triplet p-wave superconductivity is induced. For the layer deposited on a (110) facet, the induced gap does not have the p-wave orbital character, but has an even orbital symmetry and an odd dependence on energy. For the layer on the (001) facet, an exotic f-wave superconductivity is induced. We also consider the induced triplet gap in a one-dimensional half-metallic nanowire deposited on a (001) facet of a HTSC. We find that for a wire axis along the a-axis, a robust triplet p-wave gap is induced. For a wire oriented 45 degrees away from the a-axis the induced triplet p-wave gap vanishes. For the appropriately oriented wire, the induced p-wave gap should give rise to Majorana fermions at the ends of the half-metallic wire. Based on our result, topological superconductivity in a semi-conductor nanowire may also be possible given that it is oriented along the a-axis of the HTSC.Comment: 14 pages, 4 figure

    Universal Statistics of the Scattering Coefficient of Chaotic Microwave Cavities

    Full text link
    We consider the statistics of the scattering coefficient S of a chaotic microwave cavity coupled to a single port. We remove the non-universal effects of the coupling from the experimental S data using the radiation impedance obtained directly from the experiments. We thus obtain the normalized, complex scattering coefficient whose Probability Density Function (PDF) is predicted to be universal in that it depends only on the loss (quality factor) of the cavity. We compare experimental PDFs of the normalized scattering coefficients with those obtained from Random Matrix Theory (RMT), and find excellent agreement. The results apply to scattering measurements on any wave chaotic system.Comment: 10 pages, 8 Figures, Fig.7 in Color, Submitted to Phys. Rev.
    • …
    corecore