12 research outputs found

    C-5 Aryl Substituted Azaspirooxindolinones Derivatives: Synthesis and Biological Evaluation as Potential Inhibitors of Tec Family Kinases

    No full text
    The interleukin-2-inducible kinase (ITK) and Bruton tyrosine kinase (BTK) are two crucial Tec family kinase members with important roles in the development of hematopoietic malignancies, autoimmune disorders and other diseases in human. Thus, ITK and BTK are key targets for drug development. Spirooxindoles are important scaffolds for the synthesis of small molecules with broad and potent biological activities. In this study, we performed a structure-activity relationship study of a new series of 5\u27-(benzo[d][1,3]dioxol-5-yl)spiro[piperidine-4,3\u27-pyrrolo[2,3-b]pyridin]-2\u27(1\u27H)-one linked with N-acyl and C-5 aryl-substituted scaffolds in a panel of ITK and BTK cancer cell lines. Four compounds 11, 12, 14 and 15 showed high antiproliferative activity against ITK and BTK cell lines. Compounds 11 and 12 with a C-5 benzodioxole group and gem-dialkyl group attached to carbonyl on piperidine were highly effective in ITK-high Jurkat and CEM cell lines, and compound 14, a biotin analogue, was identified as a good inhibitor of BTK-high RAMOS cells. Compound 15 with cyclopropyl group attached to carbonyl on piperidine also showed good activity in ITK and BTK cell lines. </p

    Synthesis and Biological Evaluation of Oxindole Sulfonamide Derivatives as Bruton\u27s Tyrosine Kinase Inhibitors

    No full text
    Bruton\u27s tyrosine kinase (BTK) is a promising molecular target for several human B-cell-related autoimmune disorders, inflammation, and haematological malignancies. The pathogenic alterations in various cancer tissues depend on mutant BTK for cell proliferation and survival, and BTK is also overexpressed in a range of hematopoietic cells. Due to this, BTK is emerging as a potential drug target to treat various human diseases, and several reversible and irreversible inhibitors have been developed and are being developed. As a result, BTK inhibition, clinically validated as an anticancer treatment, is finding great interest in B-cell malignancies and solid tumours. This study focuses on the design and synthesis of new oxindole sulfonamide derivatives as promising inhibitors of BTK with negligible off-target effects. The most cytotoxic compounds with greater basicity were PID-4 (2.29 ± 0.52 µM), PID-6 (9.37 ± 2.47 µM), and PID-19 (2.64 ± 0.88 µM). These compounds caused a selective inhibition of Burkitt\u27s lymphoma RAMOS cells without significant cytotoxicity in non-BTK cancerous and non-cancerous cell lines. Further, PID-4 showed promising activity in inhibiting BTK and downstream signalling cascades. As a potent inhibitor of Burkitt\u27s lymphoma cells, PID-4 is a promising lead for developing novel chemotherapeutics

    Mixture Effects of Tryptophan Intestinal Microbial Metabolites on Aryl Hydrocarbon Receptor Activity

    No full text
    Aryl hydrocarbon receptor (AHR) plays pivotal roles in intestinal physiology and pathophysiology. Intestinal AHR is activated by numerous dietary, endogenous, and microbial ligands. Whereas the effects of individual compounds on AHR are mostly known, the effects of real physiological mixtures occurring in the intestine have not been studied. Using reporter gene assays and RT-PCR, we evaluated the combinatorial effects (3520 combinations) of 11 microbial catabolites of tryptophan (MICTs) on AHR. We robustly (n = 30) determined the potencies and relative efficacies of single MICTs. Synergistic effects of MICT binary mixtures were observed between low- or medium-efficacy agonists, in particular for combinations of indole-3-propionate and indole-3-lactate. Combinations comprising highly efficacious agonists such as indole-3-pyruvate displayed rather antagonist effects, caused by saturation of the assay response. These synergistic effects were confirmed by RT-PCR as CYP1A1 mRNA expression. We also tested mimic multicomponent and binary mixtures of MICTs, prepared based on the metabolomic analyses of human feces and colonoscopy aspirates, respectively. In this case, AHR responsiveness did not correlate with type of diet or health status, and the indole concentrations in the mixtures were determinative of gross AHR activity. Future systematic research on the synergistic activation of AHR by microbial metabolites and other ligands is needed

    Antimicrobial and cytotoxic activity of (thio)alkyl hexopyranosides, nonionic glycolipid mimetics

    No full text
    International audienceA series of 19 synthetic alkyl and thioalkyl glycosides derived from d-mannose, d-glucose and d-galactose and having C10–C16 aglycone were investigated for cytotoxic activity against 7 human cancer and 2 non-tumor cell lines as well as for antimicrobial potential on 12 bacterial and yeast strains. The most potent compounds were found to be tetradecyl and hexadecyl β-d-galactopyranosides (18, 19), which showed the best cytotoxicity and therapeutic index against CCRF-CEM cancer cell line. Similar cytotoxic activity showed hexadecyl α-d-mannopyranoside (5) but it also inhibited non-tumor cell lines. Because these two galactosides (18, 19) were inactive against all tested bacteria and yeast strains, they could be a target-specific for eukaryotic cells. On the other hand, β-D-glucopyranosides with tetradecyl (11) and hexadecyl (12) aglycone inhibited only Gram-positive bacterial strain Enterococcus faecalis. The studied glycosides induce changes in the lipid bilayer thickness and lateral phase separation at high concentration, as derived from SAXS experiments on POPC model membranes. In general, glucosides and galactosides exhibit more specific properties. Those with longer aglycone show high cytotoxicity and therefore, they are more promising candidates for cancer cell line targeted inhibition

    Novel 5-Substituted Oxindoles Derivatives as Bruton\u27s Tyrosine Kinase Inhibitors: Design, Synthesis, Docking, Molecular Dynamic Simulation, and Biological Evaluation

    No full text
    Bruton\u27s tyrosine kinase (BTK) is a non-RTK cytoplasmic kinase predominantly expressed by haemopoietic lineages, particularly B-cells. A new Oxindole-based focused library was designed to identify potent compounds targeting the BTK protein as anticancer agents. This study used rational approaches like structure-based pharmacophore modelling, docking, and ADME properties to select compounds. The Molecular dynamics simulation analysis carried out at 20 ns supported the stability of compound 9g within the binding pocket. All the compounds were synthesized and subjected to biological screening on two BTK-expressing cancer cell lines, RAMOS and K562, and six non-BTK cancer cell lines, A549, HCT116 (parental and p53-/-), U2OS, JURKAT, and CCRF-CEM, and two non-malignant cell lines, BJ and MRC-5. This study resulted in the identification of four new compounds, 9b, 9f, 9g, and 9h, which displayed potent activity against BTK-high RAMOS cells. These four compounds, each possessing free binding energies of -10.8, -11.1, -11.3, and -10.8 Kcal/mol, demonstrated antiproliferative and cytotoxic effects in RAMOS cells with IC50 values falling within the lower sub-micromolar range

    Betulinic Acid Decorated with Polar Groups and Blue Emitting BODIPY Dye: Synthesis, Cytotoxicity, Cell-Cycle Analysis and Anti-HIV Profiling

    No full text
    Betulinic acid (BA) is a potent triterpene, which has shown promising potential in cancer and HIV-1 treatment. Here, we report a synthesis and biological evaluation of 17 new compounds, including BODIPY labelled analogues derived from BA. The analogues terminated by amino moiety showed increased cytotoxicity (e.g., BA had on CCRF-CEM IC50 &gt; 50 μM, amine 3 IC50 0.21 and amine 14 IC50 0.29). The cell-cycle arrest was evaluated and did not show general features for all the tested compounds. A fluorescence microscopy study of six derivatives revealed that only 4 and 6 were detected in living cells. These compounds were colocalized with the endoplasmic reticulum and mitochondria, indicating possible targets in these organelles. The study of anti-HIV-1 activity showed that 8, 10, 16, 17 and 18 have had IC50i &gt; 10 μM. Only completely processed p24 CA was identified in the viruses formed in the presence of compounds 4 and 12. In the cases of 2, 8, 9, 10, 16, 17 and 18, we identified not fully processed p24 CA and p25 CA-SP1 protein. This observation suggests a similar mechanism of inhibition as described for bevirimat

    Steroid Glycosides Hyrcanoside and Deglucohyrcanoside: On Isolation, Structural Identification, and Anticancer Activity

    No full text
    Cardiac glycosides (CGs) represent a group of sundry compounds of natural origin. Most CGs are potent inhibitors of Na+/K+-ATPase, and some are routinely utilized in the treatment of various cardiac conditions. Biological activities of other lesser known CGs have not been fully explored yet. Interestingly, the anticancer potential of some CGs was revealed and thereby, some of these compounds are now being evaluated for drug repositioning. However, high systemic toxicity and low cancer cell selectivity of the clinically used CGs have severely limited their utilization in cancer treatment so far. Therefore, in this study, we have focused on two poorly described CGs: hyrcanoside and deglucohyrcanoside. We elaborated on their isolation, structural identification, and cytotoxicity evaluation in a panel of cancerous and noncancerous cell lines, and on their potential to induce cell cycle arrest in the G2/M phase. The activity of hyrcanoside and deglucohyrcanoside was compared to three other CGs: ouabain, digitoxin, and cymarin. Furthermore, by in silico modeling, interaction of these CGs with Na+/K+-ATPase was also studied. Hopefully, these compounds could serve not only as a research tool for Na+/K+-ATPase inhibition, but also as novel cancer therapeutics

    Synthesis, Leishmanicidal, Trypanocidal, Antiproliferative Assay and Apoptotic Induction of (2-Phenoxypyridin-3-yl)naphthalene-1(2H)-one Derivatives

    No full text
    The coexistence of leishmaniasis, Chagas disease, and neoplasia in endemic areas has been extensively documented. The use of common drugs in the treatment of these pathologies invites us to search for new molecules with these characteristics. In this research, we report 16 synthetic chalcone derivatives that were investigated for leishmanicidal and trypanocidal activities as well as for antiproliferative potential on eight human cancers and two nontumor cell lines. The final compounds 8&ndash;23 were obtained using the classical base-catalyzed Claisen&ndash;Schmidt condensation. The most potent compounds as parasiticidal were found to be 22 and 23, while compounds 18 and 22 showed the best antiproliferative activity and therapeutic index against CCRF-CEM, K562, A549, and U2OS cancer cell lines and non-toxic VERO, BMDM, MRC-5, and BJ cells. In the case of K562 and the corresponding drug-resistant K562-TAX cell lines, the antiproliferative activity has shown a more significant difference for compound 19 having 10.3 times higher activity against the K562-TAX than K562 cell line. Flow cytometry analysis using K562 and A549 cell lines cultured with compounds 18 and 22 confirmed the induction of apoptosis in treated cells after 24 h. Based on the structural analysis, these chalcones represent new compounds potentially useful for Leishmania, Trypanosoma&nbsp;cruzi, and some cancer treatments

    Novel 7-chloro-(4-thioalkylquinoline) derivatives: synthesis and antiproliferative activity through inducing apoptosis and DNA/RNA damage

    No full text
    A series of 78 synthetic 7-chloro-(4-thioalkylquinoline) derivatives were investigated for cytotoxic activity against eight human cancer as well as 4 non-tumor cell lines. The results showed, with some exceptions, that sulfanyl 5–40 and sulfinyl 41–62 derivatives exhibited lower cytotoxicity for cancer cell lines than those of well-described sulfonyl N-oxide derivatives 63–82. As for compound 81, the most pronounced selectivity (compared against BJ and MRC-5 cells) was observed for human cancer cells from HCT116 (human colorectal cancer with wild-type p53) and HCT116p53−/− (human colorectal cancer with deleted p53), as well as leukemia cell lines (CCRF-CEM, CEM-DNR, K562, and K562-TAX), lung (A549), and osteosarcoma cells (U2OS). A good selectivity was also detected for compounds 73 and 74 for leukemic and colorectal (with and without p53 deletion) cancer cells (compared to MRC-5). At higher concentrations (5 × IC50) against the CCRF-CEM cancer cell line, we observe the accumulation of the cells in the G0/G1 cell phase, inhibition of DNA and RNA synthesis, and induction of apoptosis. In addition, X-ray data for com?pound 15 is being reported. These results provide useful scientific data for the development of 4-thioalkylquinoline derivatives as a new class of anticancer candidates.</p
    corecore